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Hilbert space embedding of (P(Y), W2)

Let X ,Y compact & convex subsets of Rd .

Wasserstein distances:
I Give a geometry to P(Y).
I Are costly to compute.
I Are not Hilbertian.

Embedding of (P(Y),W2):
Fix ρ a.c. in P(X ) and define for µ ∈ P(Y),

µ 7→

Tµ := arg min
T∈X →Y;

T#ρ=µ

∫
X
‖x − T (x)‖2ρ(x)d(x)

 .

I Tµ ∈ L2(ρ) and W2,ρ(µ, ν) := ‖Tµ − Tν‖L2(ρ) is Hilbertian.
I For a dataset of k measures, need to solve only k OT problems.
I W2,ρ does not distort too much W2.



Metric distortion of W2,ρ w.r.t W2 (1)

Discriminative power:
I µ 7→ Tµ is injective (µ = Tµ#ρ)
I µ 7→ Tµ is reverse-Lipschitz: ‖Tµ − Tν‖L2(ρ) = W2,ρ(µ, ν) ≥W2(µ, ν)

Continuity:
I [Villani, 2003] µ 7→ Tµ is continuous (not quantitative)
I µ 7→ Tµ is at best 1

2 -Hölder continuous
I µ 7→ Tµ is indeed 1

2 -Hölder continuous near a regular measure
I [Berman, 2018] In general,

W2,ρ(µ, ν) . W2(µ, ν)
1

(d+2)2(d−1)

=⇒ dimension-dependent Hölder behavior



Metric distortion of W2,ρ w.r.t W2 (2)

Theorem. For ρ ≡ 1 on X with unit volume, for any µ, ν ∈ P(Y),

W2,ρ(µ, ν) . W2(µ, ν)2/15.

I Dimension independent.
I No assumptions on µ, ν. Main assumptions: X and Y have finite

diameters.
I No regularization.



Illustrations
Distance approximation:
Use W2,ρ(µ, ν) instead of W2(µ, ν):
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Figure 1: W2,ρ vs. W2 on different datasets of measures.

Barycenter approximation:
Use

(∑S
s=1 λsTµs

)
#
ρ instead of arg minµ

∑S
s=1 λsW2

2(µ, µs):

Figure 2: Pushforwards of some Monge embedding barycenters.
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