Linearization of the 2-Wasserstein space and stability of Optimal Transport maps

Alex Delalande with Quentin Mérigot and Frédéric Chazal

Poster #39 OTML Workshop - NeurIPS 2019

Decemeber 13, 2019

Hilbert space embedding of $(\mathcal{P}(\mathcal{Y}), W_2)$

Let \mathcal{X}, \mathcal{Y} compact & convex subsets of \mathbb{R}^d .

Wasserstein distances:

- Give a geometry to $\mathcal{P}(\mathcal{Y})$.
- Are costly to compute.
- Are not Hilbertian.

Embedding of $(\mathcal{P}(\mathcal{Y}), W_2)$: Fix ρ a.c. in $\mathcal{P}(\mathcal{X})$ and define for $\mu \in \mathcal{P}(\mathcal{Y})$,

$$\mu \mapsto \left(\mathcal{T}_{\mu} := \arg \min_{\substack{T \in \mathcal{X} \to \mathcal{Y}: \\ T_{\#} \rho = \mu}} \int_{\mathcal{X}} \|x - \mathcal{T}(x)\|^2 \rho(x) \mathrm{d}(x) \right).$$

- ► $T_{\mu} \in L^{2}(\rho)$ and $W_{2,\rho}(\mu, \nu) := \|T_{\mu} T_{\nu}\|_{L^{2}(\rho)}$ is Hilbertian.
- ▶ For a dataset of *k* measures, need to solve only *k* OT problems.
- $W_{2,\rho}$ does not distort too much W_2 .

Metric distortion of $W_{2,\rho}$ w.r.t W_2 (1)

Discriminative power:

- $\mu \mapsto T_{\mu}$ is injective $(\mu = T_{\mu \# \rho})$
- $\blacktriangleright \ \mu \mapsto T_{\mu} \text{ is reverse-Lipschitz: } \|T_{\mu} T_{\nu}\|_{L^{2}(\rho)} = W_{2,\rho}(\mu,\nu) \geq W_{2}(\mu,\nu)$

Continuity:

- ▶ [Villani, 2003] $\mu \mapsto T_{\mu}$ is continuous (not quantitative)
- $\mu \mapsto T_{\mu}$ is at best $\frac{1}{2}$ -Hölder continuous
- ▶ $\mu \mapsto T_{\mu}$ is indeed $\frac{1}{2}$ -Hölder continuous near a regular measure
- [Berman, 2018] In general,

$$W_{2,\rho}(\mu,\nu) \lesssim W_2(\mu,\nu)^{\frac{1}{(d+2)2^{(d-1)}}}$$

 \implies dimension-dependent Hölder behavior

Metric distortion of $W_{2,\rho}$ w.r.t W_2 (2)

Theorem. For $\rho \equiv 1$ on \mathcal{X} with unit volume, for any $\mu, \nu \in \mathcal{P}(\mathcal{Y})$,

$$\mathrm{W}_{2,
ho}(\mu,
u)\lesssim\mathrm{W}_{2}(\mu,
u)^{2/15}.$$

- Dimension independent.
- ▶ No assumptions on μ, ν . Main assumptions: \mathcal{X} and \mathcal{Y} have finite diameters.
- ► No regularization.

Illustrations

Distance approximation:

Use $W_{2,\rho}(\mu,\nu)$ instead of $W_2(\mu,\nu)$:

Figure 1: $W_{2,\rho}$ vs. W_2 on different datasets of measures.

Barycenter approximation: Use $\left(\sum_{s=1}^{S} \lambda_s T_{\mu_s}\right)_{\#} \rho$ instead of arg min $_{\mu} \sum_{s=1}^{S} \lambda_s W_2^2(\mu, \mu_s)$: NNXXX NNXXX NNXXX 0 1 5 7 8 9 6 0 1 2

Figure 2: Pushforwards of some Monge embedding barycenters.

References I

Berman, R. J. (2018).

Convergence rates for discretized monge-ampère equations and quantitative stability of optimal transport. arXiv preprint 1803.00785.

Villani, C. (2003).

Topics in optimal transportation. American Mathematical Soc.