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Introduction
Wassertein Barycenters

Definition: Let Ω ⊂ Rd compact. Wasserstein barycenter of ρ1, . . . , ρN ∈ P(Ω):

µρ1,...,ρN ∈ arg min
µ∈P(Ω)

1
2N

N∑
i=1

W2
2(ρi , µ),

where ∀α, β ∈ P(Ω),W2
2(α, β) = minγ∈Γ(α,β)

∫
Ω×Ω

∥x − y∥2 dγ(x , y).

▶ Geometrically faithful "average" of probability measures:

ρ1 ρ2
1
2 (ρ1 + ρ2) µρ1,ρ2
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Introduction
Wassertein Barycenters

▶ Many applications, e.g. in
1. Texture synthesis (Rabin et al., 2011).
2. Geometry processing (Solomon et al., 2015).
3. Language processing (Colombo et al., 2021).

▶ ρ1, ρ2 often not directly accessible, but ρ̂1, ρ̂2 instead:

ρ̂1 ρ̂2
1
2 (ρ̂1 + ρ̂2) µρ̂1,ρ̂2
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Can we bound W2(µρ̂1,ρ̂2 , µρ1,ρ2 ) in terms of W2(ρ̂1, ρ1) and W2(ρ̂2, ρ2)?
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Introduction
Stability of Wassertein Barycenters - Positive results

▶ Consistency:
Theorem (Le Gouic, Loubes, 2017):
If ∀i ,W2(ρn

i , ρi) −−−→
n→∞

0, then (µρn
1,...,ρ

n
N
)n is precompact and any limit

is a barycenter of ρ1, . . . , ρN .

Quantitative version?
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Introduction
Stability of Wassertein Barycenters - Positive results

▶ Quantitative stability in dimension d = 1:
Proposition:
In dimension d = 1, W2 is Hilbertian:

W2(α, β) =
∥∥∥F −1

α − F −1
β

∥∥∥
L2([0,1])

.

As a consequence:

W2(µρ1,...,ρN , µρ̃1,...,ρ̃N ) ≤ 1
N

N∑
i=1

W2(ρi , ρ̃i).

Quantitative stability result in dimension d ≥ 2?
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Introduction
Stability of Wassertein Barycenters - Negative results

▶ When d > 1, barycenter may not be unique:

ρ1

ρ2

µρ1,ρ2

ρ1

ρ2

µρ1,ρ2
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Introduction
Stability of Wassertein Barycenters - Negative results

▶ No quantitative stability is possible:

ρ1

ε/2

ε/2

ρε2

µρ1,ρε2

ρ1

ε/2

ε/2

ρ−ε2

µρ1,ρ
−ε
2

W2(ρε2, ρ−ε
2 ) = ε while W2(µρ1,ρε2

, µρ1,ρ
−ε
2

) = 1.
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Introduction
Stability of Wassertein Barycenters - Negative results

Proposition (Agueh, Carlier, 2011):
If one of the ρi ’s is absolutely continuous, the barycenter is unique.

▶ Even with an a.c. marginal, α-Hölder behaviour for any α ∈ (0, 1)
is possible:

ρ1

ρ02

µρ1,ρ02
c0

= 1
4

ρ1

ρε2

µρ1,ρε2

ε
ε

cε

∼ 1
4 + ε2α ∼ 1

4 − ε2α

W2(ρ0
2, ρ

ε
2) = ε while W2(µρ1,ρ0

2
, µρ1,ρε2

) ∼ εα.
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Outline

Part I
Main result.

Consequence: plug-in estimation of Wasserstein barycenters.

Part II
Sketch of proof.

Main tool: strong-convexity of the variance functional.

Part III
General result.

Consequence: Statistics in the Wasserstein space.
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Stability of Wasserstein Barycenters
Main result

Theorem (Carlier, D., Mérigot, 2022):
▶ Let ρ1, . . . , ρN ∈ P(Ω) and ρ̃1, . . . , ρ̃N ∈ P(Ω) such that:

1. ρ1 admits a bounded density and satisfies a Poincaré-Wirtinger
inequality: ∃CPW > 0 s.t. ∀f ∈ C1(Ω),

∥f − ⟨f |ρ1⟩∥L1(ρ1) ≤ CPW ∥∇f ∥L1(ρ1) .

2. spt(ρ1) is a connected union of K convex sets.
▶ Then:

W2(µρ1,...,ρN , µρ̃1,...,ρ̃N ) ≤ Cd,R,ρ1 N1/6

(
1
N

N∑
i=1

W2(ρi , ρ̃i )

)1/6

,

where Cd,R,ρ1 = Cd Rd+1per(spt(ρ1))1/3 ∥ρ1∥∞
∥1/ρ1∥∞

K2

ε
CPW .

▶ Remarks:
1. Optimal assumptions?
2. Optimal exponent?
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Stability of Wasserstein Barycenters
Statistical consequence

Theorem (Fournier, Guillin, 2015):
▶ Let ρ ∈ P(Ω) and ρ̂n = 1

n
∑n

j=1 δxj where (xj )1≤j≤n ∼ ρ⊗n. Then:

EW2
2(ρ̂n, ρ) ≤ Cd R2

{
n−1/2 if d < 4,
n−1/2 log(n) if d = 4,
n−2/d else.

Corollary (Carlier, D., Mérigot, 2022):
▶ Under the assumptions of the theorem, if ∀i , ρ̂i = 1

n
∑n

j=1 δxi,j where
(xi,j )1≤j≤n ∼ ρ⊗n

i , then

EW2
2(µρ1,...,ρN , µρ̂n

1,...,ρ̂
n
N

) ≲ N1/3

{
n−1/12 if d < 4,
n−1/12 log(n)1/6 if d = 4,
n−1/(3d) else.
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Outline
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Sketch of proof
Strong-convexity of the variance functional?

Definition: Variance functional associated to ρ1, . . . , ρN ∈ P(Ω):

Fρ1,...,ρN : µ 7→ 1
2N

N∑
i=1

W2
2(ρi , µ).

▶ Fρ1,...,ρN is convex.

Stability estimate for µρ1,...,ρN ∈ arg minµ∈P(Ω) Fρ1,...,ρN (µ).
⇐⇒

Strong-convexity estimate for Fρ1,...,ρN .

▶ Fρ1,...,ρN = 1
N
∑N

i=1 fρi , where ∀ρ ∈ P(Ω), fρ : µ 7→ 1
2W2

2(ρ, µ).

When is fρ strongly-convex?
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Sketch of proof
Strong-convexity of fρ = 1

2 W2
2(ρ, ·)?

When is fρ : µ 7→ 1
2 W2

2(ρ, µ) strongly-convex?
▶ Kantorovich duality:

1
2W2

2(ρ, µ) = ⟨∥·∥2

2 |ρ⟩ + ⟨∥·∥2

2 |µ⟩ − ( min
ψ:Rd →R

⟨ψ∗|ρ⟩ + ⟨ψ|µ⟩),

where ψ∗(·) = supy∈Rd ⟨·|y⟩ − ψ(y) is the Legendre transform of ψ.

▶ Subdifferential of fρ:

∂fρ(µ) =
{

∥·∥2

2 − ψρ→µ | ψρ→µ ∈ arg min
ψ

⟨ψ∗|ρ⟩ + ⟨ψ|µ⟩

}
.

∀µ, ν ∈ P(Ω), ⟨ ∥·∥2

2 − ψρ→µ|ν − µ⟩ ≤ fρ(ν) − fρ(µ).

→ Gap in this inequality?
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Sketch of proof
Strong-convexity of the Kantorovich functional?

Gap in fρ(µ) + ⟨ ∥·∥2

2 − ψρ→µ|ν − µ⟩ ≤ fρ(ν)?

Definition: Kantorovich functional associated to ρ ∈ P(Ω) :
Kρ : ψ 7→ ⟨ψ∗|ρ⟩.

▶ From Kantorovich duality,

fρ(ν) − fρ(µ) − ⟨ ∥·∥2

2 − ψρ→µ|ν − µ⟩
=

Kρ(ψρ→µ) − Kρ(ψρ→ν) − ⟨−ν|ψρ→µ − ψρ→ν⟩.
Note that −ν ∈ ∂Kρ(ψρ→ν)

(since 0 ∈ ∂Kρ(ψρ→ν) + ν, since ψρ→ν ∈ arg minψ Kρ(ψ) + ⟨ψ|ν⟩)

→ When is Kρ strongly-convex?
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Sketch of proof
Strong-convexity of the Kantorovich functional?

When is Kρ : ψ 7→ ⟨ψ∗|ρ⟩ strongly-convex?
1. Strong-convexity should work "up to additive constants":

∀c ∈ R, Kρ(ψ + c) = Kρ(ψ) − c.

2. Support of ρ should be connected:
Theorem (Brenier, 1987): If ρ is absolutely continuous, then the optimal trans-
port solution between ρ and any µ ∈ P(Ω) is unique and it is induced by any
convex function ϕ satisfying (∇ϕ)#ρ = µ.

∇ψ∗
µ#ρ = ∇ψ̃∗

µ#ρ = µ.

=⇒ ψµ, ψ̃µ ∈ arg minψ Kρ(ψ) + ⟨ψ|µ⟩.

=⇒ ∀t ∈ [0, 1],
Kρ((1 − t)ψµ + tψ̃µ) = (1 − t)Kρ(ψµ) + tKρ(ψ̃µ).

Assumption: Source ρ is absolutely continuous and satisfies a
Poincaré-Wirtinger inequality: ∃p ≥ 1,CPW ∈ (0,+∞) s.t.

∀f ∈ C1(Rd), ∥f − Eρf ∥Lp(ρ) ≤ CPW ∥∇f ∥Lp(ρ,Rd ) .

16/26



Sketch of proof
Strong-convexity of the Kantorovich functional?

When is Kρ : ψ 7→ ⟨ψ∗|ρ⟩ strongly-convex?
1. Strong-convexity should work "up to additive constants":

∀c ∈ R, Kρ(ψ + c) = Kρ(ψ) − c.

2. Support of ρ should be connected:
Theorem (Brenier, 1987): If ρ is absolutely continuous, then the optimal trans-
port solution between ρ and any µ ∈ P(Ω) is unique and it is induced by any
convex function ϕ satisfying (∇ϕ)#ρ = µ.

∇ψ∗
µ#ρ = ∇ψ̃∗

µ#ρ = µ.

=⇒ ψµ, ψ̃µ ∈ arg minψ Kρ(ψ) + ⟨ψ|µ⟩.

=⇒ ∀t ∈ [0, 1],
Kρ((1 − t)ψµ + tψ̃µ) = (1 − t)Kρ(ψµ) + tKρ(ψ̃µ).

Assumption: Source ρ is absolutely continuous and satisfies a
Poincaré-Wirtinger inequality: ∃p ≥ 1,CPW ∈ (0,+∞) s.t.

∀f ∈ C1(Rd), ∥f − Eρf ∥Lp(ρ) ≤ CPW ∥∇f ∥Lp(ρ,Rd ) .

16/26



Sketch of proof
Strong-convexity of the Kantorovich functional?

When is Kρ : ψ 7→ ⟨ψ∗|ρ⟩ strongly-convex?
1. Strong-convexity should work "up to additive constants":

∀c ∈ R, Kρ(ψ + c) = Kρ(ψ) − c.

2. Support of ρ should be connected:
Theorem (Brenier, 1987): If ρ is absolutely continuous, then the optimal trans-
port solution between ρ and any µ ∈ P(Ω) is unique and it is induced by any
convex function ϕ satisfying (∇ϕ)#ρ = µ.

∇ψ∗
µ#ρ = ∇ψ̃∗

µ#ρ = µ.

=⇒ ψµ, ψ̃µ ∈ arg minψ Kρ(ψ) + ⟨ψ|µ⟩.

=⇒ ∀t ∈ [0, 1],
Kρ((1 − t)ψµ + tψ̃µ) = (1 − t)Kρ(ψµ) + tKρ(ψ̃µ).

Assumption: Source ρ is absolutely continuous and satisfies a
Poincaré-Wirtinger inequality: ∃p ≥ 1,CPW ∈ (0,+∞) s.t.

∀f ∈ C1(Rd), ∥f − Eρf ∥Lp(ρ) ≤ CPW ∥∇f ∥Lp(ρ,Rd ) .

16/26



Sketch of proof
Strong-convexity of the Kantorovich functional?

▶ A known result:
Theorem (Ambrosio, Gigli, 2011): Assume ψρ→µ is α-strongly convex for some α > 0.
Then:

α

2CPW
Varρ(ψ∗

ρ→µ − ψ∗
ρ→ν) ≤ Kρ(ψρ→µ) − Kρ(ψρ→ν) − ⟨−ν|ψρ→µ − ψρ→ν⟩.

Strong assumption:
ψρ→µ is α-strongly convex ⇐⇒ ∇ψ∗

ρ→µ is 1
α

-Lipschitz continuous!

→ Not satisfied in general.
→ Implies that (∇ψ∗

ρ→µ)#ρ = µ has a connected support.
→ In our context, µ is a (candidate) barycenter: no regularity theory.
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Sketch of proof
Strong-convexity of the Kantorovich functional

Theorem (D., Mérigot, 2021):
▶ Let ρ ∈ Pa.c.(Ω) with with bounded density on spt(ρ) that is assumed to

be convex.

Then for all µ, ν ∈ P(Ω),

Cd,R,ρVarρ(ψ∗
ρ→µ − ψ∗

ρ→ν) ≤ Kρ(ψρ→µ) − Kρ(ψρ→ν) − ⟨−ν|ψρ→µ − ψρ→ν⟩,

where Cd,R,ρ =
(

e(d + 1)2d−1R2 ∥ρ∥2
∞

∥1/ρ∥2
∞

)−1
.

▶ Remarks:
1. Proof idea: lower-bound on d2

dt2 Kρ((1 − t)ψρ→µ + tψρ→ν) from the
Brascamp-Lieb inequality.

2. Similar result with non-compact targets (moment assumptions).
3. Optimal exponents.
4. spt(ρ) convex? Can be relaxed.

Corollary (Carlier, D., Mérigot, 2022): If spt(ρ) is a connected finite union of convex
sets s.t. ρ satisfies a L1 Poincaré-Wirtinger inequality, a similar estimate holds.
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Sketch of proof
Strong-convexity of fρ = 1

2 W2
2(ρ, ·)

▶ Recall that
Kρ(ψρ→µ) − Kρ(ψρ→ν) − ⟨−ν|ψρ→µ − ψρ→ν⟩

=
1
2 W2

2(ρ, ν) − 1
2 W2

2(ρ, µ) − ⟨ ∥·∥2

2 − ψρ→µ|ν − µ⟩.

Corollary (D., Mérigot, 2021):
▶ Let ρ ∈ Pa.c.(Ω) with bounded density satisfying a L1 Poincaré-Wirtinger

inequality. Assume that spt(ρ) is a connected union of K convex sets.

Then for all µ, ν ∈ P(Ω),

Cd,R,ρW6
2(µ, ν) ≤ 1

2W2
2(ρ, ν) − 1

2W2
2(ρ, µ) − ⟨∥·∥2

2 − ψρ→µ|ν − µ⟩,

where Cd,R,ρ =
(

Cd R3d+2per(spt(ρ))2 ∥ρ∥5
∞

∥1/ρ∥5
∞

K7
ε6 C6

PW

)−1
.

▶ W6
2(µ, ν) ≲ Varρ(ψ∗

ρ→µ −ψ∗
ρ→ν) obtained from new Galgliardo-Nirenberg type inequality:

Proposition (D., Mérigot, 2021): For K ⊂ Rd compact and u, v : K → R Lipschitz convex,
∥∇u − ∇v∥6

L2(K,Rd ) ≤ Cd Hd−1(∂K)2(Lip(u) + Lip(v))4 ∥u − v∥2
L2(K) .
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Sketch of proof
Strong-convexity of the variance functional

▶ Recall that Fρ1,...,ρN (µ) = 1
2N
∑N

i=1 W2
2(ρi , µ).

Corollary (Carlier, D., Mérigot, 2022):
Under the assumptions of the main theorem, for all µ, ν ∈ P(Ω),

1
N W6

2(µ, ν) ≲ Fρ1,...,ρN (ν) − Fρ1,...,ρN (µ) − ⟨∥·∥2

2 − 1
N
∑

i

ψρi →µ|ν − µ⟩.

▶ Remarks:
1. The stability result follows immediately together with

|Fρ1,...,ρN (·) − Fρ̃1,...,ρ̃N (·)| ≲ 1
N
∑

i W2(ρi , ρ̃i ).
2. May be used to get stability of regularized Wasserstein barycenters.
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Outline

Part I
Main result.

Consequence: plug-in estimation of Wasserstein barycenters.

Part II
Sketch of proof.

Main tool: strong-convexity of the variance functional.

Part III
General result.

Consequence: Statistics in the Wasserstein space.
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Stability - General result
Wassertein Barycenter - Extension of definition

▶ Wasserstein barycenter of ρ1, . . . , ρN ∈ P(Ω):

µρ1,...,ρN ∈ arg min
µ∈P(Ω)

1
2N

N∑
i=1

W2
2(ρi , µ).

▶ Extension 1: weight ρi with αi > 0:

µα1ρ1,...,αNρN ∈ arg min
µ∈P(Ω)

1
2
∑

i αi

N∑
i=1

αiW2
2(ρi , µ).

▶ Extension 2: allow N → ∞. Let P ∈ P(P(Ω)):

µP ∈ arg min
µ∈P(Ω)

1
2

∫
P(Ω)

W2
2(ρ, µ)dP(ρ).
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Stability - General result

Theorem (Carlier, D., Mérigot, 2022):
▶ Let P,Q ∈ P(P(Ω)). Assume that there exists SP ⊂ Pa.c.(Ω) such that

P(SP) = αP > 0 and ∀ρ ∈ SP:

1. ρ admits a bounded density and satisfies a Poincaré-Wirtinger
inequality.

2. spt(ρ) is a finite connected union of convex sets.
▶ Then:

W2(µP, µQ) ≲ 1
α

1/6
P

W1(P,Q)1/6,

and

W2(µP, µQ) ≲ 1
α

1/5
P

∥P − Q∥1/5
TV .

∀P,Q ∈ P(P(Ω)), W1(P,Q) := min
γ∈Γ(P,Q)

∫
P(Ω)×P(Ω)

W2(ρ, ρ̃)dγ(ρ, ρ̃).
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Stability - General result
Statistics in the Wasserstein Space

▶ Let P ∈ P(P(Ω)) and Pm = 1
m
∑m

i=1 δρi with (ρi)1≤i≤m ∼ P⊗m.

→ How fast does µPm approximate µP in terms of m?

▶ A known result:
Theorem (Le Gouic et al., 2022):
Let P ∈ P(P(Ω)) and a barycenter µP s.t. ∀ρ ∈ spt(P), ρ = (∇ψµP→ρ)#µP with

αId ⪯ D2ψµP→ρ ⪯ βId . Then if β − α < 1, µP is unique and

EW2(µP, µPm ) ≤
4R√

1 − β + α
m−1/2.

▶ Remarks:
1. Parametric rate.
2. Very strong assumption: no such regularity theory yet for

Wasserstein barycenters.
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i=1 δρi with (ρi)1≤i≤m ∼ P⊗m.

→ How fast does µPm approximate µP in terms of m?

▶ A known result:
Theorem (Le Gouic et al., 2022):
Let P ∈ P(P(Ω)) and a barycenter µP s.t. ∀ρ ∈ spt(P), ρ = (∇ψµP→ρ)#µP with

αId ⪯ D2ψµP→ρ ⪯ βId . Then if β − α < 1, µP is unique and
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4R√
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1. Parametric rate.
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Stability - General result
Statistics in the Wasserstein Space

▶ Let P ∈ P(P(Ω)) and Pm = 1
m
∑m

i=1 δρi with (ρi)1≤i≤m ∼ P⊗m.
▶ If P gives mass αP to a set of "nice" measures, then:

EW2(µP, µPm ) ≲ 1
α

1/6
P

EW1(P,Pm)1/6.

▶ If upper Wasserstein dimension of P < s (Definition 4 of (Weed
and Bach (2019))) then,

EW1(P,Pm) ≲ m−1/s .

▶ If αP = 1:
Corollary (Carlier, D., Mérigot, 2022):
▶ Let P ∈ P(P(Ω)) and Pm = 1

m
∑m

i=1 δρi with (ρi )1≤i≤m ∼ P⊗m. Assume
that for all ρ ∈ spt(P),

1. ρ admits a bounded density and satisfies a Poincaré-Wirtinger
inequality and spt(ρ) is a finite connected union of convex sets.

▶ Then:

EW2(µP, µPm ) ≲ m−1/30.
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Thank you for your attention!
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Appendix
Local strong convexity of the Kantorovich functional Kρ

For ρ with convex support. Let µ0, µ1 ∈ P(Ω) and for k ∈ {0, 1},

ψk ∈ arg min
ψ∈C(Ω),⟨ψ|µk ⟩=0

Kρ(ψ).

For t ∈ [0, 1] denote ψt = (1 − t)ψ0 + tψ1 = ψ0 + tv , and notice that:

d
dt Kρ(ψt) = −Eρv(∇ψt∗),

d2

dt2 Kρ(ψt) = Eρ⟨∇v(∇ψt∗)|
(
D2ψt)−1 ∇v(∇ψt∗)⟩.

Brascamp-Lieb inequality:

Varρ(v(∇ψt∗)) ≲ Eρ⟨∇v(∇ψt∗)|
(
D2ψt)−1 ∇v(∇ψt∗)⟩ = d2

dt2 Kρ(ψt).
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Local strong convexity of the Kantorovich functional Kρ

Brascamp-Lieb inequality:

Varρ(v(∇ψt∗)) ≲ Eρ⟨∇v(∇ψt∗)|
(
D2ψt)−1 ∇v(∇ψt∗)⟩ = d2

dt2 Kρ(ψt).

∫ 1
0 . . . dt+ concavity of A 7→ det(A)1/d :

Varµ0+µ1
2

(ψ1 − ψ0) ≲ Kρ(ψ1) − Kρ(ψ0) − ⟨∇Kρ(ψ0)|ψ1 − ψ0⟩.

Fenchel-Young (in)equality:

1
2Varρ(ψ1∗ − ψ0∗) ≤ Varµ0+µ1

2
(ψ1 − ψ0).
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