Quantitative Stability of the Pushforward Operation by an Optimal Transport Map

Alex Delalande
Joint work with Guillaume Carlier and Quentin Mérigot

November 2023

Problem statement

Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ be a fixed, proper and continuous convex function.
Let $\rho, \tilde{\rho} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ and $\gamma, \tilde{\gamma} \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that

$$
\left\{\begin{array} { l }
{ (p _ { 1 }) _ { \# \gamma } = \rho , } \\
{ \operatorname { s p t } (\gamma) \subset \partial \phi , }
\end{array} \quad \left\{\begin{array}{l}
\left(p_{1}\right)_{\#} \tilde{\gamma}=\tilde{\rho} \\
\operatorname{spt}(\tilde{\gamma}) \subset \partial \phi
\end{array}\right.\right.
$$

Under what conditions on $\phi, \rho, \tilde{\rho}$ and for which C, α do we have

$$
\mathrm{W}_{2}\left(\left(p_{2}\right)_{\# \gamma},\left(p_{2}\right)_{\#} \tilde{\gamma}\right) \leq C \mathrm{~W}_{2}(\rho, \tilde{\rho})^{\alpha} ?
$$

Remark: whenever ϕ is differentiable $\rho-$ and $\tilde{\rho}-$ a.e.

Problem statement

Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ be a fixed, proper and continuous convex function.
Let $\rho, \tilde{\rho} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ and $\gamma, \tilde{\gamma} \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that

$$
\left\{\begin{array} { l }
{ (p _ { 1 }) _ { \# \gamma } = \rho , } \\
{ \operatorname { s p t } (\gamma) \subset \partial \phi , }
\end{array} \quad \left\{\begin{array}{l}
\left(p_{1}\right)_{\#} \tilde{\gamma}=\tilde{\rho} \\
\operatorname{spt}(\tilde{\gamma}) \subset \partial \phi
\end{array}\right.\right.
$$

Under what conditions on $\phi, \rho, \tilde{\rho}$ and for which C, α do we have

$$
\mathrm{W}_{2}\left(\left(p_{2}\right)_{\#} \gamma,\left(p_{2}\right)_{\#} \tilde{\gamma}\right) \leq C \mathrm{~W}_{2}(\rho, \tilde{\rho})^{\alpha} ?
$$

Remark: whenever ϕ is differentiable ρ - and $\tilde{\rho}$-a.e.,

$$
\begin{gathered}
\gamma=(\mathrm{id}, \nabla \phi)_{\#} \rho, \quad \tilde{\gamma}=(\mathrm{id}, \nabla \phi)_{\#} \tilde{\rho} \\
\mathrm{~W}_{2}\left(\left(p_{2}\right)_{\#} \gamma,\left(p_{2}\right)_{\#} \tilde{\gamma}\right)=\mathrm{W}_{2}\left((\nabla \phi)_{\#} \rho,(\nabla \phi)_{\#} \tilde{\rho}\right)
\end{gathered}
$$

Motivations

1. Resolution of Kantorovich dual:

$$
\min _{\psi} \underbrace{\left\langle\psi^{*} \mid \rho\right\rangle}_{:=K(\psi)}+\langle\psi \mid \mu\rangle
$$

Gradient of $K: \nabla K(\psi)=-\left(\nabla \psi^{*}\right)_{\#} \rho$.
2. Barycenters in Linearized $O T$:
3. Generative modelling with an ICNN ϕ_{θ} :

Motivations

1. Resolution of Kantorovich dual:

$$
\min _{\psi} \underbrace{\left\langle\psi^{*} \mid \rho\right\rangle}_{:=K(\psi)}+\langle\psi \mid \mu\rangle .
$$

Gradient of $K: \nabla K(\psi)=-\left(\nabla \psi^{*}\right)_{\#} \rho$.
2. Barycenters in Linearized OT:

$$
\operatorname{Bar}_{\rho}\left(\left(\mu_{i}\right)_{1 \leq i \leq N}\right)=\left(\frac{1}{N} \sum_{i} \nabla \phi_{\rho \rightarrow \mu_{i}}\right)_{\#} \rho .
$$

3. Generative modelling with an ICNN ϕ_{θ} :

Motivations

1. Resolution of Kantorovich dual:

$$
\min _{\psi} \underbrace{\left\langle\psi^{*} \mid \rho\right\rangle}_{:=K(\psi)}+\langle\psi \mid \mu\rangle
$$

Gradient of $K: \nabla K(\psi)=-\left(\nabla \psi^{*}\right)_{\#} \rho$.
2. Barycenters in Linearized OT:

$$
\operatorname{Bar}_{\rho}\left(\left(\mu_{i}\right)_{1 \leq i \leq N}\right)=\left(\frac{1}{N} \sum_{i} \nabla \phi_{\rho \rightarrow \mu_{i}}\right)_{\#} \rho .
$$

3. Generative modelling with an ICNN ϕ_{θ} :

$$
\min _{\theta} \mathcal{L}(\theta) \approx \mathrm{W}_{2}\left(\left(\nabla \phi_{\theta}\right)_{\#} \rho, \mu\right)
$$

A positive result

Proposition:

Let $\alpha \in(0,1)$ and let $\phi \in \mathcal{C}^{1, \alpha}\left(\mathbb{R}^{d}\right)$ convex. Then for any $\rho, \tilde{\rho} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$,

$$
\mathrm{W}_{2}\left((\nabla \phi)_{\#} \rho,(\nabla \phi)_{\#} \tilde{\rho}\right) \leq\|\nabla \phi\|_{\mathcal{C}^{0}, \alpha} \mathrm{~W}_{2}(\rho, \tilde{\rho})^{\alpha} .
$$

Negative results

- No assumption on $\rho, \tilde{\rho}$:

$$
\mathrm{W}_{2}\left(\left(p_{2}\right)_{\#} \gamma,\left(p_{2}\right)_{\#} \tilde{\gamma}\right)=2 \text { while } \mathrm{W}_{2}(\rho, \tilde{\rho})=0 .
$$

Negative results

- Assume ρ is absolutely continuous and $\rho \leq M<+\infty$:

$$
\mathrm{W}_{2}\left(\left(p_{2}\right)_{\#} \gamma,\left(p_{2}\right)_{\#} \gamma^{\varepsilon}\right) \sim \mathrm{W}_{2}\left(\rho, \rho^{\varepsilon}\right)^{1 / 3}
$$

Main result

Assumptions:

- Let $R>0$ and let $\Omega=B(0, R) \subset \mathbb{R}^{d}$.
- Let $\phi: \Omega \rightarrow \mathbb{R}$ convex and R-Lipschitz continuous.
- Let $M \in(0,+\infty)$.

Main result

Assumptions:

- Let $R>0$ and let $\Omega=B(0, R) \subset \mathbb{R}^{d}$.
\rightarrow Let $\phi: \Omega \rightarrow \mathbb{R}$ convex and R-Lipschitz continuous.
- Let $M \in(0,+\infty)$.

Theorem:

- For any $\rho \in \mathcal{P}_{\text {a.c. }}(\Omega)$ s.t. $\rho \leq M$,
- For any $\tilde{\rho} \in \mathcal{P}(\Omega)$ and $\tilde{\gamma} \in \mathcal{P}(\Omega \times \Omega)$ s.t. $\left(p_{1}\right)_{\#} \tilde{\gamma}=\tilde{\rho}$ and $\operatorname{spt}(\tilde{\gamma}) \subset \partial \phi$,

$$
\mathrm{W}_{2}\left((\nabla \phi)_{\#} \rho,\left(p_{2}\right)_{\#} \tilde{\gamma}\right) \leq C(d, M, R) \mathrm{W}_{2}(\rho, \tilde{\rho})^{1 / 3}
$$

where $C(d, M, R) \sim d^{2} 2^{8(d+1)}\left(1+\beta_{d}\right)(1+M)(1+R)^{4+d}$.

Key ingredient

Covering number of near-singular sets of convex functions

$$
\Sigma_{\eta, \alpha}:=\{x \in \Omega \mid \operatorname{diam}(\partial \phi(B(x, \eta)) \geq \alpha\} .
$$

Theorem:

Remark: also entails that $\operatorname{dim}_{\mathcal{H}}\left(\Sigma_{0, \alpha}\right) \leq d-1$ and

Key ingredient

Covering number of near-singular sets of convex functions

$$
\Sigma_{\eta, \alpha}:=\{x \in \Omega \mid \operatorname{diam}(\partial \phi(B(x, \eta)) \geq \alpha\}
$$

Theorem: For all $\alpha, \eta>0$,

$$
\mathcal{N}\left(\Sigma_{\eta, \alpha}, \eta\right) \lesssim \frac{d^{2} R^{d-1}}{\alpha \eta^{d-1}} .
$$

In particular,

$$
\int_{\Omega} \operatorname{diam}(\partial \phi(B(x, \eta)))^{2} \mathrm{~d} x \leq C(d, R) \eta
$$

where $C(d, R) \sim 2^{3 d} d^{2} \beta_{d} R^{d+1}$.
Remark: also entails that $\operatorname{dim}_{\mathcal{H}}\left(\Sigma_{0, \alpha}\right) \leq d-1$ and

Key ingredient

Covering number of near-singular sets of convex functions

$$
\Sigma_{\eta, \alpha}:=\{x \in \Omega \mid \operatorname{diam}(\partial \phi(B(x, \eta)) \geq \alpha\} .
$$

Theorem: For all $\alpha, \eta>0$,

$$
\mathcal{N}\left(\Sigma_{\eta, \alpha}, \eta\right) \lesssim \frac{d^{2} R^{d-1}}{\alpha \eta^{d-1}} .
$$

In particular,

$$
\int_{\Omega} \operatorname{diam}(\partial \phi(B(x, \eta)))^{2} \mathrm{~d} x \leq C(d, R) \eta
$$

where $C(d, R) \sim 2^{3 d} d^{2} \beta_{d} R^{d+1}$.
Remark: also entails that $\operatorname{dim}_{\mathcal{H}}\left(\Sigma_{0, \alpha}\right) \leq d-1$ and

$$
\mathcal{H}^{d-1}\left(\Sigma_{0, \alpha}\right) \leq C(d) \frac{\operatorname{Lip}(\phi) R^{d-1}}{\alpha}
$$

Comparison

On the singularities of convex functions

Theorem (Alberti, Ambrosio, Cannarsa, 1992):
Let $k \in\{1, \ldots, d\}$. The set

$$
\Sigma^{k}:=\left\{x \in \Omega \mid \operatorname{dim}_{\mathcal{H}}(\partial \phi(x)) \geq k\right\}
$$

is countably \mathcal{H}^{d-k}-rectifiable. It satisfies

$$
\int_{\Sigma^{k}} \mathcal{H}^{k}(\partial \phi(x)) \mathrm{d} \mathcal{H}^{d-k}(x) \leq C(d)(\operatorname{Lip}(\phi)+2 R)^{d} .
$$

Comparison

On the singularities of convex functions

Theorem (Alberti, Ambrosio, Cannarsa, 1992):
Let $k \in\{1, \ldots, d\}$. The set

$$
\Sigma^{k}:=\left\{x \in \Omega \mid \operatorname{dim}_{\mathcal{H}}(\partial \phi(x)) \geq k\right\}
$$

is countably \mathcal{H}^{d-k}-rectifiable. It satisfies

$$
\int_{\Sigma^{k}} \mathcal{H}^{k}(\partial \phi(x)) \mathrm{d} \mathcal{H}^{d-k}(x) \leq C(d)(\operatorname{Lip}(\phi)+2 R)^{d}
$$

This yields

$$
\mathcal{H}^{d-1}\left(\Sigma_{0, \alpha}\right) \leq C(d) \frac{(\operatorname{Lip}(\phi)+2 R)^{d}}{\alpha}
$$

Main result

General setting

Assumptions:

- Let $R>0$ and let $\Omega=B(0, R) \subset \mathbb{R}^{d}$.
- Let $p \geq 2$ and $c(x, y)=\|x-y\|^{p}$. Let $\varphi \in \mathcal{C}(\Omega)$ satisfying $\varphi=\left(\varphi^{c}\right)^{\bar{c}}$. Denote

$$
T_{\varphi}: x \mapsto x-\left(\nabla\|\cdot\|^{p}\right)^{-1}(\nabla \varphi(x)) .
$$

- Let $M \in(0,+\infty)$.

Theorem:

Main result

General setting

Assumptions:

- Let $R>0$ and let $\Omega=B(0, R) \subset \mathbb{R}^{d}$.
- Let $p \geq 2$ and $c(x, y)=\|x-y\|^{p}$. Let $\varphi \in \mathcal{C}(\Omega)$ satisfying $\varphi=\left(\varphi^{c}\right)^{\bar{c}}$. Denote

$$
T_{\varphi}: x \mapsto x-\left(\nabla\|\cdot\|^{p}\right)^{-1}(\nabla \varphi(x)) .
$$

- Let $M \in(0,+\infty)$.

Theorem:

- For any $\rho \in \mathcal{P}_{\text {a.c. }}(\Omega)$ s.t. $\rho \leq M$,
- For any $\tilde{\rho} \in \mathcal{P}(\Omega)$ and $\tilde{\gamma} \in \mathcal{P}(\Omega \times \Omega)$ s.t. $\left(p_{1}\right)_{\#} \tilde{\gamma}=\tilde{\rho}$ and $\operatorname{spt}(\tilde{\gamma}) \subset \partial^{c} \varphi$,
- For any $q \in(p-1, \infty)$ and $r \in(1, \infty]$

$$
\mathrm{W}_{q}\left(\left(T_{\varphi}\right)_{\#} \rho,\left(p_{2}\right)_{\#} \tilde{\gamma}\right) \leq C(d, q, p, M, R) \mathrm{W}_{r}(\rho, \tilde{\rho})^{\frac{r}{q(r+1)}}
$$

where $C(d, q, p, M, R) \sim 2^{8(d+1)} p^{3}\left(\frac{q}{q-p+1}\right)^{1 / q} d^{2}\left(1+\beta_{d}\right)\left(1+M_{\rho}\right)(1+R)^{2+p+d}$.

Main result

General setting

Assumptions:

- Let $R>0$ and let $\Omega=B(0, R) \subset \mathbb{R}^{d}$.
- Let $p \geq 2$ and $c(x, y)=\|x-y\|^{p}$. Let $\varphi \in \mathcal{C}(\Omega)$ satisfying $\varphi=\left(\varphi^{c}\right)^{\bar{c}}$. Denote

$$
T_{\varphi}: x \mapsto x-\left(\nabla\|\cdot\|^{p}\right)^{-1}(\nabla \varphi(x))
$$

- Let $M \in(0,+\infty)$.

Theorem:

- For any $\rho \in \mathcal{P}_{\text {a.c. }}(\Omega)$ s.t. $\rho \leq M$,
- For any $\tilde{\rho} \in \mathcal{P}(\Omega)$ and $\tilde{\gamma} \in \mathcal{P}(\Omega \times \Omega)$ s.t. $\left(p_{1}\right)_{\#} \tilde{\gamma}=\tilde{\rho}$ and $\operatorname{spt}(\tilde{\gamma}) \subset \partial^{c} \varphi$,
- For any $q \in(p-1, \infty)$ and $r \in(1, \infty]$

$$
\mathrm{W}_{q}\left(\left(T_{\varphi}\right)_{\#} \rho,\left(p_{2}\right)_{\#} \tilde{\gamma}\right) \leq C(d, q, p, M, R) \mathrm{W}_{r}(\rho, \tilde{\rho})^{\frac{r}{q(r+1)}}
$$

where $C(d, q, p, M, R) \sim 2^{8(d+1)} p^{3}\left(\frac{q}{q-p+1}\right)^{1 / q} d^{2}\left(1+\beta_{d}\right)\left(1+M_{\rho}\right)(1+R)^{2+p+d}$.
Thank you for your attention!

