Nearly Tight Convergence Bounds for Semi-discrete Entropic Optimal Transport

Alex Delalande

Université Paris-Saclay & Inria Saclay

November 2021

Quadratic Optimal Transport with Entropic Regularization

▶ Let \mathcal{X}, \mathcal{Y} be compact subsets of \mathbb{R}^d and $\rho \in \mathcal{P}(\mathcal{X}), \mu \in \mathcal{P}(\mathcal{Y})$.

▶ For $\varepsilon \ge 0$, Quadratic OT problem between ρ and μ with entropic regularization:

$$\min_{\pi\in\Pi(\rho,\mu)}\int_{\mathcal{X}\times\mathcal{Y}}\|x-y\|^2\,\mathrm{d}\pi(x,y)+\varepsilon\mathrm{KL}(\pi|\rho\otimes\mu),\qquad(\mathrm{P}_\varepsilon)$$

where

$$\operatorname{KL}(\pi|\rho\otimes\mu) = \begin{cases} \int_{\mathcal{X}\times\mathcal{Y}} \left(\log\left(\frac{\mathrm{d}\pi}{\mathrm{d}\rho\otimes\mu}(x,y)\right) - 1\right) \mathrm{d}\pi(x,y) + 1 & \text{if } \pi\ll\rho\otimes\mu, \\ +\infty & \text{else.} \end{cases}$$

Quadratic Optimal Transport with Entropic Regularization

- Let \mathcal{X}, \mathcal{Y} be compact subsets of \mathbb{R}^d and $\rho \in \mathcal{P}(\mathcal{X}), \mu \in \mathcal{P}(\mathcal{Y})$.
- For $\varepsilon \ge 0$, Quadratic OT problem between ρ and μ with entropic regularization:

$$\min_{\pi\in\Pi(\rho,\mu)}\int_{\mathcal{X}\times\mathcal{Y}}\|x-y\|^2\,\mathrm{d}\pi(x,y)+\varepsilon\mathrm{KL}(\pi|\rho\otimes\mu). \tag{P}_{\varepsilon}$$

If ε = 0: value of (P_ε) defines W₂²(ρ, μ).
 Possibly hard to solve numerically, bad sample complexity.

Quadratic Optimal Transport with Entropic Regularization

- ▶ Let \mathcal{X}, \mathcal{Y} be compact subsets of \mathbb{R}^d and $\rho \in \mathcal{P}(\mathcal{X}), \mu \in \mathcal{P}(\mathcal{Y})$.
- For $\varepsilon \ge 0$, Quadratic OT problem between ρ and μ with entropic regularization:

$$\min_{\pi\in\Pi(\rho,\mu)}\int_{\mathcal{X}\times\mathcal{Y}}\|x-y\|^2\,\mathrm{d}\pi(x,y)+\varepsilon\mathrm{KL}(\pi|\rho\otimes\mu). \tag{P}_{\varepsilon}$$

- If ε = 0: value of (P_ε) defines W₂²(ρ, μ).
 Possibly hard to compute, bad sample complexity.
- If $\varepsilon > 0$:
 - (P_ε) is a ε-strongly-convex min. problem → fast optimization algorithms (see e.g. Cuturi (2013); Altschuler et al. (2017); Dvurechensky et al. (2018); Peyré and Cuturi (2019); Schmitzer (2019); Genevay et al. (2016); Bercu and Bigot (2020)).
 - improved sample complexity for the value of (P_ε) (Genevay et al. (2019); Mena and Niles-Weed (2019)).

Quadratic Optimal Transport with Entropic Regularization

$$\min_{\pi\in\Pi(\rho,\mu)}\int_{\mathcal{X}\times\mathcal{Y}}\|x-y\|^2\,\mathrm{d}\pi(x,y)+\varepsilon\mathrm{KL}(\pi|\rho\otimes\mu). \tag{P}_{\varepsilon}$$

The case ε > 0 is generally easier to solve than the case ε = 0.
 For ε > 0 and a solution π^(Pε) to (Pε), introduce

$$\mathrm{W}_{2,arepsilon}(
ho,\mu) := \left(\int_{\mathcal{X} imes\mathcal{Y}} \|x-y\|^2 \,\mathrm{d}\pi^{(\mathrm{P}_arepsilon)}(x,y)
ight)^{1/2}.$$

Quadratic Optimal Transport with Entropic Regularization

$$\min_{\pi\in\Pi(\rho,\mu)}\int_{\mathcal{X}\times\mathcal{Y}}\|x-y\|^2\,\mathrm{d}\pi(x,y)+\varepsilon\mathrm{KL}(\pi|\rho\otimes\mu).$$

$$(P_{\varepsilon})$$

• For $\varepsilon > 0$ and a solution $\pi^{(P_{\varepsilon})}$ to (P_{ε}) , introduce

$$\mathrm{W}_{2,\varepsilon}(\rho,\mu) := \left(\int_{\mathcal{X}\times\mathcal{Y}} \|x-y\|^2 \,\mathrm{d}\pi^{(\mathrm{P}_{\varepsilon})}(x,y)\right)^{1/2}.$$

Hope that:

$$W_{2,\varepsilon}(\rho,\mu) \approx W_{2,0}(\rho,\mu) = W_2(\rho,\mu).$$

How good is this approximation?

Quadratic Optimal Transport with Entropic Regularization

Quadratic Optimal Transport with Entropic Regularization

► $W_{2,\varepsilon} \xrightarrow[\varepsilon \to 0]{} W_2$ is established in general settings (see e.g. Mikami (2004); Léonard (2012); Bernton et al. (2021); Nutz and Wiesel (2021)).

In the continuous setting (where ρ, μ are a.c.): Adams et al. (2011); Duong et al. (2013); Erbar et al. (2015); Pal (2019); Conforti and Tamanini (2021) gave 1st/2nd order asymptotics:

If the densities of ρ, μ are bounded, then

$$\begin{split} \mathrm{W}_{2,\varepsilon}^{2}(\rho,\mu) + \varepsilon \mathrm{KL}(\pi^{(\mathrm{P}_{\varepsilon})}|\rho\otimes\mu) &= \mathrm{W}_{2}^{2}(\rho,\mu) - \frac{\varepsilon}{2}\left(\mathrm{KL}(\rho|\lambda) + \mathrm{KL}(\mu|\lambda)\right) \\ &- \frac{\varepsilon}{2}d\log(\pi\varepsilon) + \frac{\varepsilon^{2}}{16}I(\rho,\mu) + o(\varepsilon^{2}), \end{split}$$

where

- λ is the Lebesgue measure on R^d.
- I(ρ, μ) is the integrated Fisher information along the 2-Wasserstein geodesic connecting ρ and μ.

Quadratic Optimal Transport with Entropic Regularization

► $W_{2,\varepsilon} \xrightarrow[\varepsilon \to 0]{} W_2$ is established in general settings (see e.g. Mikami (2004); Léonard (2012); Bernton et al. (2021); Nutz and Wiesel (2021)).

- In the continuous setting (where ρ, μ are a.c.): Adams et al. (2011); Duong et al. (2013); Erbar et al. (2015); Pal (2019); Conforti and Tamanini (2021) gave 1st/2nd order asymptotics.
- In the discrete setting (where ρ, μ are discrete): Cominetti and Martín (1994); Weed (2018) showed an exponential convergence rate:

$$0 \leq \mathrm{W}_{2,arepsilon}^2(
ho,\mu) - \mathrm{W}_2^2(
ho,\mu) \leq \mathcal{C}_1(
ho,\mu)\exp\left(-rac{\mathcal{C}_2(
ho,\mu)}{arepsilon}
ight),$$

where $C_1(\rho,\mu)$, $C_2(\rho,\mu)$ are explicit positive constants that depend on ρ and μ .

Quadratic Optimal Transport with Entropic Regularization

▶ $W_{2,\varepsilon} \xrightarrow[\varepsilon \to 0]{} W_2$ is established in general settings (see e.g. Mikami (2004); Léonard (2012); Bernton et al. (2021); Nutz and Wiesel (2021)).

- In the continuous setting (where ρ, μ are a.c.): Adams et al. (2011); Duong et al. (2013); Erbar et al. (2015); Pal (2019); Conforti and Tamanini (2021) gave 1st/2nd order asymptotics.
- In the discrete setting (where ρ, μ are discrete): Cominetti and Martín (1994); Weed (2018) showed an exponential convergence rate.

What about the intermediate semi-discrete setting (where ρ is a.c. and μ is discrete)?

Entropic Semi-discrete Optimal Transport

- Semi-discrete setting:
 - Let $\mathcal{X} \subset \mathbb{R}^d$ compact and $\rho \in \mathcal{P}_{a.c.}(\mathcal{X})$ absolutely continuous.

• Let
$$\mathcal{Y} = \{y_1, \ldots, y_N\} \subset \mathbb{R}^d$$
 and $\mu = \sum_{i=1}^N \mu_i \delta_{y_i} \in \mathcal{P}(\mathcal{Y}).$

Note that (P_ε) is equivalent to a regularized "maximum covariance" problem:

$$\max_{\pi\in\Pi(\rho,\mu)}\int_{\mathcal{X}\times\mathcal{Y}}\langle x|y\rangle\mathrm{d}\pi(x,y)-\varepsilon\mathrm{KL}(\pi|\rho\otimes\sigma),\qquad(\mathrm{P}_{\varepsilon}')$$

where $\sigma = \sum_{i=1}^{N} \delta_{y_i}$, with the relation:

$$(\mathbf{P}_{2\varepsilon}) = M_2(\rho) + M_2(\mu) - 2\varepsilon \mathcal{H}(\mu) - 2 \times (\mathbf{P}'_{\varepsilon}).$$

Entropic Semi-discrete Optimal Transport

Semi-discrete setting:

- Let $\mathcal{X} \subset \mathbb{R}^d$ compact and $\rho \in \mathcal{P}_{a.c.}(\mathcal{X})$ absolutely continuous.
- Let $\mathcal{Y} = \{y_1, \dots, y_N\} \subset \mathbb{R}^d$ and $\mu = \sum_{i=1}^N \mu_i \delta_{y_i} \in \mathcal{P}(\mathcal{Y})$.
- Note that (P_ε) is equivalent to a regularized "maximum covariance" problem:

$$\max_{\pi\in\Pi(\rho,\mu)}\int_{\mathcal{X}\times\mathcal{Y}}\langle x|y\rangle\mathrm{d}\pi(x,y)-\varepsilon\mathrm{KL}(\pi|\rho\otimes\sigma). \tag{P'_{\varepsilon}}$$

- $(\mathbf{P}'_{\varepsilon})$ admits a **unique solution** π^{ε}
 - by ε-strong concavity of (P'_ε) if ε > 0.
 - by Brenier (1991) theorem (ρ is a.c.) if $\varepsilon = 0$.

Entropic Semi-discrete Optimal Transport

 (Semi-)Dual formulation with strong duality (Genevay et al. (2016); Bercu and Bigot (2020)):

$$\min_{\psi \in \mathbb{R}^{N}} \int_{\mathcal{X}} \psi^{\boldsymbol{c},\varepsilon} \mathrm{d}\rho + \langle \psi | \mu \rangle + \varepsilon, \qquad (\mathrm{D}_{\varepsilon})$$

where $\psi^{c,\varepsilon}$ is the $(c,\varepsilon)/\text{Legendre transform of }\psi$:

$$\psi^{c,\varepsilon}(x) = \begin{cases} \varepsilon \log\left(\sum_{i=1}^{N} e^{\frac{\langle x|y_i\rangle - \psi_i}{\varepsilon}}\right) & \text{if } \varepsilon > 0\\ \max_{i=1,\dots,N} \langle x|y_i\rangle - \psi_i = \psi^*(x) & \text{if } \varepsilon = 0 \end{cases}$$

Entropic Semi-discrete Optimal Transport

(Semi-)Dual formulation:

$$\min_{\psi \in \mathbb{R}^N} \int_{\mathcal{X}} \psi^{\boldsymbol{c},\varepsilon} \mathrm{d}\rho + \langle \psi | \mu \rangle + \varepsilon.$$
 (D_{\varepsilon})

• Notice that ψ and $\psi + c \mathbb{1}_N$ yield the same value:

$$\min_{\psi \in \mathbb{R}^{N}, \langle \psi | \mathbb{1}_{N} \rangle = 0} \int_{\mathcal{X}} \psi^{c, \varepsilon} \mathrm{d}\rho + \langle \psi | \mu \rangle + \varepsilon.$$
 (D_{\varepsilon}) (D_{\varepsilon})

▶ By strict convexity, (D_{ε}) admits a **unique solution** $\psi^{\varepsilon} \in (\mathbb{1}_N)^{\perp}$.

Entropic Semi-discrete Optimal Transport

$$\min_{\psi \in \mathbb{R}^{N}, \langle \psi | \mathbb{1}_{N} \rangle = 0} \int_{\mathcal{X}} \psi^{c, \varepsilon} \mathrm{d}\rho + \langle \psi | \mu \rangle + \varepsilon.$$
 (D_{\varepsilon})

First order condition:

$$\mu(\{y_i\}) = \begin{cases} \int_{x \in \mathcal{X}} e^{\frac{\langle x|y_i \rangle - \psi_i^{\varepsilon} - (\psi^{\varepsilon})^{\varepsilon,\varepsilon}(x)}{\varepsilon}} \mathrm{d}\rho(x) & \text{if } \varepsilon > 0, \\ \int_{x \in \mathcal{X}} \mathbb{1}_{\mathrm{Lag}_i(\psi^0)}(x) \mathrm{d}\rho(x) = \rho(\mathrm{Lag}_i(\psi^0)) & \text{if } \varepsilon = 0, \end{cases}$$

where $\operatorname{Lag}_{i}(\psi) = \{x \in \mathcal{X} | \forall j, \langle x | y_{i} \rangle - \psi_{i} \geq \langle x | y_{j} \rangle - \psi_{j} \}.$

▶ Primal-dual relationship: $\forall A \subset \mathcal{X}, i \in \{1, \dots, N\},\$

$$\pi^{\varepsilon}(A, \{y_i\}) = \begin{cases} \int_{x \in A} e^{\frac{\langle x|y_i \rangle - \psi_i^{\varepsilon} - (\psi^{\varepsilon})^{c,\varepsilon}(x)}{\varepsilon}} d\rho(x) & \text{if } \varepsilon > 0, \\ \int_{x \in A} \mathbb{1}_{\operatorname{Lag}_i(\psi^0)}(x) d\rho(x) = \rho(\operatorname{Lag}_i(\psi^0) \cap A) & \text{if } \varepsilon = 0. \end{cases}$$

Entropic Semi-discrete Optimal Transport

Laguerre cells: a 2-dimensional example

$$\rho = \mathbb{1}_{[a,b] \times [c,d]}$$
 and $\mu = \sum_{i=1}^{N} \mu_i \delta_{y_i}$.

Entropic Semi-discrete Optimal Transport

I

$$\begin{aligned} \text{Lag}_{i}(\psi^{0}) &= \{ x \in \mathcal{X} | \forall j, \langle x | y_{i} \rangle - \psi_{i}^{0} \geq \langle x | y_{j} \rangle - \psi_{j}^{0} \}. \end{aligned}$$
(Figures inspired from Peyré and Cuturi (2019))
$$\varepsilon = 0;$$

Each color corresponds to one of $\left(\operatorname{Lag}_i(\psi^0)\right)_{i=1,\ldots,N}$.

First-order condition: μ({y_i}) = ρ(Lag_i(ψ⁰)).
 Primal-dual relation: ∀A ⊂ X, π⁰(A, {y_i}) = ρ(Lag_i(ψ⁰) ∩ A)

$$\implies \operatorname{Lag}_{i}(\psi^{0}) = (T_{\rho \to \mu})^{-1}(\{y_{i}\}).$$

17/44

Entropic Semi-discrete Optimal Transport

$$\pi_{x,i}^{\varepsilon} := \frac{e^{(\langle x|y_i \rangle - \psi_i^{\varepsilon})/\varepsilon}}{\sum_j e^{(\langle x|y_j \rangle - \psi_j^{\varepsilon})/\varepsilon}}.$$
$$\varepsilon = 7.5 \times 10^{-2}:$$

- First-order condition: $\mu(\{y_i\}) = \int_{x \in \mathcal{X}} \pi_{x,i}^{\varepsilon} d\rho(x).$
- ▶ Primal-dual relation: $\forall A \subset \mathcal{X}, \pi^{\varepsilon}(A, \{y_i\}) = \int_{x \in A} \pi^{\varepsilon}_{x,i} d\rho(x).$

Entropic Semi-discrete Optimal Transport

$$\begin{split} \pi_{x,i}^{\varepsilon} &:= \frac{e^{(\langle x|y_i \rangle - \psi_i^{\varepsilon})/\varepsilon}}{\sum_j e^{(\langle x|y_j \rangle - \psi_j^{\varepsilon})/\varepsilon}}.\\ \varepsilon &= 5 \times 10^{-2}: \end{split}$$

- First-order condition: $\mu(\{y_i\}) = \int_{x \in \mathcal{X}} \pi_{x,i}^{\varepsilon} d\rho(x).$
- ▶ Primal-dual relation: $\forall A \subset \mathcal{X}, \pi^{\varepsilon}(A, \{y_i\}) = \int_{x \in A} \pi^{\varepsilon}_{x,i} d\rho(x).$

Entropic Semi-discrete Optimal Transport

$$\pi_{x,i}^{\varepsilon} := \frac{e^{(\langle x | y_i \rangle - \psi_i^{\varepsilon})/\varepsilon}}{\sum_j e^{(\langle x | y_j \rangle - \psi_j^{\varepsilon})/\varepsilon}}.$$
$$\varepsilon = 7.5 \times 10^{-3}:$$

- First-order condition: $\mu(\{y_i\}) = \int_{x \in \mathcal{X}} \pi_{x,i}^{\varepsilon} d\rho(x).$
- ▶ Primal-dual relation: $\forall A \subset \mathcal{X}, \pi^{\varepsilon}(A, \{y_i\}) = \int_{x \in A} \pi^{\varepsilon}_{x,i} d\rho(x).$

Entropic Semi-discrete Optimal Transport

$$\pi_{x,i}^{\varepsilon} := \frac{e^{(\langle x|y_i \rangle - \psi_i^{\varepsilon})/\varepsilon}}{\sum_j e^{(\langle x|y_j \rangle - \psi_j^{\varepsilon})/\varepsilon}}.$$
$$\varepsilon = 2.5 \times 10^{-3}:$$

- First-order condition: $\mu(\{y_i\}) = \int_{x \in \mathcal{X}} \pi_{x,i}^{\varepsilon} d\rho(x).$
- ▶ Primal-dual relation: $\forall A \subset \mathcal{X}, \pi^{\varepsilon}(A, \{y_i\}) = \int_{x \in A} \pi^{\varepsilon}_{x,i} d\rho(x).$

Non-asymptotic Behavior of Potentials

Recent result from Altschuler, Niles-Weed and Stromme (2021) (Theorem 1.1): under regularity assumptions on ρ,

$$\mathbf{W}_{2,\varepsilon}^2(\rho,\mu) = \mathbf{W}_2^2(\rho,\mu) + \varepsilon^2 \frac{\pi^2}{12} \sum_{i < j} \frac{w_{ij}}{\|y_i - y_j\|} + o(\varepsilon^2),$$

where
$$w_{ij} = \int_{\operatorname{Lag}_i(\psi^0) \cap \operatorname{Lag}_j(\psi^0)} \rho(x) \mathrm{d}\mathcal{H}^{d-1}(x).$$

Non-asymptotic Behavior of Potentials

Recent result from Altschuler, Niles-Weed and Stromme (2021) (Theorem 1.1): under regularity assumptions on ρ,

$$W_{2,\varepsilon}^2(\rho,\mu) = W_2^2(\rho,\mu) + \varepsilon^2 \frac{\pi^2}{12} \sum_{i < j} \frac{w_{ij}}{\|y_i - y_j\|} + o(\varepsilon^2),$$

where
$$w_{ij} = \int_{\text{Lag}_i(\psi^0) \cap \text{Lag}_j(\psi^0)} \rho(x) d\mathcal{H}^{d-1}(x).$$

Showed using (Theorem 1.3 in Altschuler et al. (2021)):

$$\begin{split} & \left| \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (\psi^{\varepsilon} - \psi^{0}) = \dot{\psi}^{\varepsilon} \right|_{\varepsilon = 0} = 0, \end{split}$$
 where $\dot{\psi}^{\varepsilon} = \frac{\partial}{\partial \varepsilon} \psi^{\varepsilon}.$

Non-asymptotic Behavior of Potentials

Recent result from Altschuler, Niles-Weed and Stromme (2021) (Theorem 1.1): under regularity assumptions on ρ,

$$W_{2,\varepsilon}^2(\rho,\mu) = W_2^2(\rho,\mu) + \varepsilon^2 \frac{\pi^2}{12} \sum_{i < j} \frac{w_{ij}}{\|y_i - y_j\|} + o(\varepsilon^2),$$

where
$$w_{ij} = \int_{\text{Lag}_i(\psi^0) \cap \text{Lag}_j(\psi^0)} \rho(x) d\mathcal{H}^{d-1}(x).$$

Showed using (Theorem 1.3 in Altschuler et al. (2021)):

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (\psi^{\varepsilon} - \psi^{0}) = \dot{\psi^{\varepsilon}} \Big|_{\varepsilon = 0} = 0.$$

This result can be extended and quantified with a non-asymptotic analysis.

Non-asymptotic Behavior of Potentials

▶ Assumption: The compact set \mathcal{X} is convex. The source density ρ is α -Hölder continuous for some $\alpha \in (0, 1]$ and verifies on \mathcal{X} :

 $0 < m_{
ho} \leq
ho \leq M_{
ho} < +\infty.$

Non-asymptotic Behavior of Potentials

▶ Assumption: The compact set \mathcal{X} is convex. The source density ρ is α -Hölder continuous for some $\alpha \in (0, 1]$ and verifies on \mathcal{X} :

 $0 < m_{
ho} \leq
ho \leq M_{
ho} < +\infty.$

Theorem (D., 2021): The mapping $\varepsilon \mapsto \psi^{\varepsilon}$ from \mathbb{R}^*_+ to $(\mathbb{1}_N)^{\perp}$ is \mathcal{C}^1 . For any $\varepsilon > 0, \alpha' \in (0, \alpha)$,

 $\left\|\dot{\psi^{\varepsilon}}\right\|_{2}\lesssim\min(\varepsilon^{lpha'},1),$

where $\dot{\psi}^{\varepsilon} = \frac{\partial}{\partial \varepsilon} \psi^{\varepsilon}$ and \lesssim hides multiplicative constants that depend on $\mathcal{X}, \rho, \mathcal{Y}, \mu$.

Non-asymptotic Behavior of Potentials

Theorem (D., 2021): The mapping $\varepsilon \mapsto \psi^{\varepsilon}$ from \mathbb{R}^*_+ to $(\mathbb{1}_N)^{\perp}$ is \mathcal{C}^1 . For any $\varepsilon > 0, \alpha' \in (0, \alpha)$,

 $\left\|\dot{\psi^{\varepsilon}}\right\|_{2}\lesssim\min(\varepsilon^{lpha'},1),$

where $\dot{\psi}^{\varepsilon} = \frac{\partial}{\partial \varepsilon} \psi^{\varepsilon}$ and \lesssim hides multiplicative constants that depend on $\mathcal{X}, \rho, \mathcal{Y}, \mu$.

Remark: A rough upperbound on the constant is

$$\begin{split} \mathcal{C}(d) & \times \frac{N}{\underline{\mu}} \frac{M\rho}{m\rho} e^{R_{\mathcal{Y}} \operatorname{diam}(\mathcal{X})} \Biggl(NR_{\mathcal{X}} \operatorname{diam}(\mathcal{Y}) + \log \frac{1}{\underline{\mu}} \\ & + N^2 M\rho \operatorname{diam}(\mathcal{X})^{d-1} (1 + \frac{C_{\rho}}{\delta^{\alpha}} + R_{\mathcal{X}} \operatorname{diam}(\mathcal{Y}) + \log \frac{1}{\underline{\mu}}) \\ & + N^3 M\rho \frac{\operatorname{diam}(\mathcal{X})^{d-2} \operatorname{diam}(\mathcal{Y})^4}{\cos(\theta/2)\delta^4} (1 + R_{\mathcal{X}} \operatorname{diam}(\mathcal{Y}) + \log \frac{1}{\underline{\mu}}) \Biggr), \end{split}$$

where $\mathcal{X} \subset B(0, R_{\mathcal{X}}), \quad Y \subset B(0, R_{\mathcal{Y}}), \quad \underline{\mu} = \min_{i} \mu_{i} > 0, \quad \delta = \min_{i \neq j} \left| \left| y_{i} - y_{j} \right| \right| > 0,$ $\theta = \max_{i,j,k} \{ \angle y_{i}y_{j}y_{k} | \angle y_{i}y_{j}y_{k} < \pi \}, \quad \forall x, x' \in \mathcal{X}, \left| \rho(x) - \rho(x') \right| \leq C_{\rho} \left| \left| x - x' \right| \right|^{\alpha}.$

Non-asymptotic Behavior of Potentials

Corollary (D., 2021): Let $0 < \varepsilon' \le \varepsilon$. For any $\alpha' \in (0, \alpha)$, $\left\|\psi^{\varepsilon} - \psi^{\varepsilon'}\right\|_{\infty} \lesssim \varepsilon^{\alpha'}(\varepsilon - \varepsilon').$

Non-asymptotic Behavior of Potentials

Corollary (D., 2021): Let $0 < \varepsilon' \le \varepsilon$. For any $\alpha' \in (0, \alpha)$,

$$\left\|\psi^{\varepsilon}-\psi^{\varepsilon'}\right\|_{\infty}\lesssim \varepsilon^{\alpha'}(\varepsilon-\varepsilon').$$

Remark: May "justify" ε -scaling heuristic, where ε is decreased over the iterations of an algorithm that estimates ψ^0 .

Non-asymptotic Behavior of Potentials

Corollary (D., 2021): Let $0 < \varepsilon' < \varepsilon$. For any $\alpha' \in (0, \alpha)$, $\left\|\psi^{\varepsilon}-\psi^{\varepsilon'}\right\|_{\infty}\lesssim \varepsilon^{\alpha'}(\varepsilon-\varepsilon').$ In particular, letting ε' go to 0 yields $\left\|\psi^{\varepsilon} - \psi^{\mathbf{0}}\right\|_{\infty} \lesssim \varepsilon^{1 + \alpha'}.$ Additionally, for ρ -a.e. $x \in \mathcal{X}$. $|\pi^{\varepsilon}(x,\cdot)-\pi^{0}(x,\cdot)| \lesssim e^{-c_{x}/\varepsilon},$ where $c_x = \min_{i \in \{1,...,N\}} \{(\psi^0)^*(x) - \langle x | y_i \rangle + \psi_i^0 \mid \langle x | y_i \rangle - \psi_i^0 \neq (\psi^0)^*(x)\} > 0.$

Non-asymptotic Expansion of the Difference of Costs

Theorem (D., 2021): For any
$$\alpha' \in (0, \alpha)$$
 and $\varepsilon > 0$,

$$\left| W_{2,\varepsilon}^{2}(\rho, \mu) - W_{2}^{2}(\rho, \mu) - \varepsilon^{2} \frac{\pi^{2}}{12} \sum_{i < j} \frac{w_{ij}}{\|y_{i} - y_{j}\|} \right| \lesssim \varepsilon^{2+\alpha'}.$$
This inequality is tight

Remark: No third-order expansion.

Sketch of proof for $\left\|\dot{\psi^{\varepsilon}}\right\|_{2}\lesssim\min(\varepsilon^{lpha'},1)$ A governing O.D.E.

Dual formulation:

$$\min_{\psi \in \mathbb{R}^{N}, \langle \psi | \mathbb{1}_{N} \rangle = 0} \int_{\mathcal{X}} \psi^{c, \varepsilon} \mathrm{d}\rho + \langle \psi | \mu \rangle + \varepsilon.$$
 (D_{\varepsilon})

▶ Regularized Kantorovich's functional: $\forall \psi \in \mathbb{R}^N$,

$$egin{aligned} \mathcal{K}^arepsilon(\psi) &= \int_\mathcal{X} \psi^{m{c},arepsilon} \mathrm{d}
ho + arepsilon \ &= \int_\mathcal{X} arepsilon \log\left(\sum_{i=1}^N \exp\left(rac{\langle x|y_i
angle - \psi_i}{arepsilon}
ight)
ight) \mathrm{d}
ho(x) + arepsilon. \end{aligned}$$

• $\mathcal{K}^{\varepsilon}$ strictly convex on $(\mathbb{1}_N)^{\perp}$. First-order condition for (D_{ε}) : $\nabla \mathcal{K}^{\varepsilon}(\psi^{\varepsilon}) = -\mu.$

Sketch of proof for $\left\|\dot{\psi^{\varepsilon}}\right\|_2\lesssim\min(\varepsilon^{lpha'},1)$ A governing O.D.E.

▶ Regularized Kantorovich's functional: $\forall \psi \in \mathbb{R}^{N}$,

$$\mathcal{K}^{\varepsilon}(\psi) = \int_{\mathcal{X}} \varepsilon \log \left(\sum_{i=1}^{N} \exp \left(\frac{\langle x | y_i \rangle - \psi_i}{\varepsilon} \right) \right) \mathrm{d}\rho(x) + \varepsilon.$$

• $\mathcal{K}^{\varepsilon}$ strictly convex on $(\mathbb{1}_N)^{\perp}$. First-order condition for (D_{ε}) :

$$\nabla \mathcal{K}^{\varepsilon}(\psi^{\varepsilon}) = -\mu.$$

Implicit function theorem:

• $\psi \mapsto \mathcal{K}^{\varepsilon}(\psi)$ is a \mathcal{C}^2 strictly convex mapping from $(\mathbb{1}_N)^{\perp}$ to \mathbb{R} . • $\varepsilon \mapsto \nabla \mathcal{K}^{\varepsilon}(\psi)$ is a \mathcal{C}^1 mapping from \mathbb{R}^*_+ to \mathbb{R} .

 $\implies \varepsilon \mapsto \psi^{\varepsilon}$ is a \mathcal{C}^1 mapping from \mathbb{R}^*_+ to $(\mathbb{1}_N)^{\perp}$ and

$$abla^2 \mathcal{K}^arepsilon(\psi^arepsilon) \dot{\psi^arepsilon} + rac{\partial}{\partial arepsilon} (
abla \mathcal{K}^arepsilon) (\psi^arepsilon) = 0.$$

Sketch of proof for $\left\|\dot{\psi^{\varepsilon}}\right\|_2\lesssim\min(\varepsilon^{lpha'},1)$ A governing O.D.E.

 \blacktriangleright The potential ψ^{ε} satisfies

$$abla^2 \mathcal{K}^arepsilon(\psi^arepsilon) \dot{\psi^arepsilon} + rac{\partial}{\partialarepsilon} (
abla \mathcal{K}^arepsilon) (\psi^arepsilon) = 0.$$

• \implies An upper bound on $\|\dot{\psi}^{\varepsilon}\|$ may be obtained from:

- A lower bound on $\nabla^2 \mathcal{K}^{\varepsilon}(\psi^{\varepsilon}) \rightarrow \mathbf{Pr\acute{e}kopa-Leindler}$ inequality.
- ▶ An upper bound on $\frac{\partial}{\partial \varepsilon} (\nabla \mathcal{K}^{\varepsilon})(\psi^{\varepsilon}) \rightarrow$ "Laplace's method".

Sketch of proof for $\left\|\dot{\psi^{arepsilon}} ight\|_{2}\lesssim \min(arepsilon^{lpha'},1)$

Strong convexity estimate of $\mathcal{K}^{\varepsilon}$

Theorem (D., 2021): For any $\varepsilon > 0$ and $v \in \mathbb{R}^N$,

$$\mathbb{V}\mathrm{ar}_{\mu}(\mathbf{v}) \leq \left(e^{\mathcal{R}_{\mathcal{Y}}\mathrm{diam}(\mathcal{X})}rac{M_{
ho}}{m_{
ho}} + arepsilon
ight) \langle \mathbf{v}|
abla^{2}\mathcal{K}^{arepsilon}(\psi^{arepsilon})\mathbf{v}
angle.$$

Sketch of proof for $\left\|\dot{\psi^{\varepsilon}}\right\|_2 \lesssim \min(\varepsilon^{lpha'},1)$

Strong convexity estimate of $\mathcal{K}^{\varepsilon}$

Theorem (D., 2021): For any $\varepsilon > 0$ and $v \in \mathbb{R}^N$,

$$\mathbb{V}\mathrm{ar}_{\mu}(\mathbf{v}) \leq \left(e^{\mathcal{R}_{\mathcal{Y}}\mathrm{diam}(\mathcal{X})}rac{M_{
ho}}{m_{
ho}} + arepsilon
ight) \langle \mathbf{v}|
abla^2 \mathcal{K}^{arepsilon}(\psi^{arepsilon}) \mathbf{v}
angle.$$

Remark: this result is mainly deduced from the Prékopa-Leindler inequality: Let 0 < λ < 1 and f, g, h : ℝ^N → ℝ₊. Assume that ∀x, y ∈ ℝ^N, h((1 − λ)x + λy) ≥ f(x)^{1−λ}g(y)^λ.

Then

$$\|h\|_{1} \ge \|f\|_{1}^{1-\lambda} \|g\|_{1}^{\lambda}.$$

Sketch of proof for $\left\|\dot{\psi^{\varepsilon}}\right\|_{2}\lesssim\min(\varepsilon^{lpha'},1)$

Strong convexity estimate of $\mathcal{K}^{\varepsilon}$

Theorem (D., 2021): For any $\varepsilon > 0$ and $v \in \mathbb{R}^N$,

$$\mathbb{V}\mathrm{ar}_{\mu}(\mathbf{v}) \leq \left(e^{\mathcal{R}_{\mathcal{Y}}\mathrm{diam}(\mathcal{X})}rac{M_{
ho}}{m_{
ho}} + arepsilon
ight) \langle \mathbf{v}|
abla^2 \mathcal{K}^{arepsilon}(\psi^{arepsilon})\mathbf{v}
angle.$$

- Remark: this result is deduced mainly from the Prékopa-Leindler inequality.
- Remark: as ε → 0, recover a similar estimate in the unregularized case that was proved using the Brascamp-Lieb inequality (D. and Mérigot, 2021):

$$\mathbb{V}\mathrm{ar}_{\mu}(\mathbf{v}) \leq \left(e^{\mathcal{R}_{\mathcal{Y}}\mathrm{diam}(\mathcal{X})}rac{M_{
ho}}{m_{
ho}}
ight)\langle\mathbf{v}|
abla^{2}\mathcal{K}^{0}(\psi^{0})\mathbf{v}
angle.$$

Sketch of proof for $\|\dot{\psi}^{\varepsilon}\|_{2} \lesssim \min(\varepsilon^{\alpha'}, 1)$ Bound on the second term $\frac{\partial}{\partial \varepsilon} (\nabla \mathcal{K}^{\varepsilon})(\psi^{\varepsilon})$

Theorem (D., 2021): For any
$$\varepsilon > 0$$
,
 $\left\| \frac{\partial}{\partial \varepsilon} (\nabla \mathcal{K}^{\varepsilon})(\psi^{\varepsilon}) \right\|_{\infty} \lesssim \min \left(\varepsilon^{\alpha'}, \frac{1}{\varepsilon} \right).$

Sketch of proof for $\|\dot{\psi}\varepsilon\|_2 \lesssim \min(\varepsilon^{\alpha'}, 1)$ Bound on the second term $\frac{\partial}{\partial \varepsilon}(\nabla \mathcal{K}^{\varepsilon})(\psi^{\varepsilon})$

Theorem (D., 2021): For any
$$\varepsilon > 0$$
,
 $\left\| \frac{\partial}{\partial \varepsilon} (\nabla \mathcal{K}^{\varepsilon})(\psi^{\varepsilon}) \right\|_{\infty} \lesssim \min \left(\varepsilon^{\alpha'}, \frac{1}{\varepsilon} \right).$

Proof idea: We have

$$\left[\frac{\partial}{\partial\varepsilon}(\nabla\mathcal{K}^{\varepsilon})(\psi^{\varepsilon})\right]_{i} = \int_{\mathcal{X}}\sum_{j\neq i} \left(\frac{f_{i}^{\varepsilon}(x) - f_{j}^{\varepsilon}(x)}{\varepsilon^{2}}\right) \pi_{x,j}^{\varepsilon} \pi_{x,i}^{\varepsilon} \mathrm{d}\rho(x),$$

where
$$\forall j, f_j^{\varepsilon}(x) = \langle x | y_j \rangle - \psi_j^{\varepsilon} \text{ and } \pi_{x,j}^{\varepsilon} = \frac{\exp(\frac{f_j^{\varepsilon}(x)}{\varepsilon})}{\sum_k \exp(\frac{f_k^{\varepsilon}(x)}{\varepsilon})}.$$

 $\implies \text{Control } |f_i^{\varepsilon}(x) - f_j^{\varepsilon}(x)|, \ \pi_{x,i}^{\varepsilon}, \ \pi_{x,j}^{\varepsilon} \text{ depending on the position} \\ \text{of } x \text{ in } \mathcal{X} = \bigcup_i \operatorname{Lag}_i(\psi^{\varepsilon}).$

Behavior of $\varepsilon\mapsto\psi^{\varepsilon}$

- Let $\mathcal{X} = [-1, 1]$, ρ symmetric on \mathcal{X} and $\mu = \frac{1}{5} \sum_{i=1}^{5} \delta_{y_i}$, where $\{y_1, \ldots, y_5\} \subset \mathcal{X}$.
- Consider 4 different sources:
 - Lebesgue: $\rho(x) \propto \mathbb{1}_{[-1,1]}(x)$,
 - Rescaled Gaussian: $\rho(x) \propto e^{-x^2/2\sigma^2} \mathbb{1}_{[-1,1]}(x)$,
 - Rescaled Laplace: $\rho(x) \propto e^{-|x|} \mathbb{1}_{[-1,1]}(x)$,
 - $\frac{1}{2}$ -Hölder density: $\rho(x) \propto (1 |x|^{1/2})\mathbb{1}_{[-1,1]}(x)$.

Behavior of $\varepsilon \mapsto \psi^{\varepsilon}$

• Observe $\|\dot{\psi}^{\varepsilon}\|_2 \lesssim \min(\varepsilon^{\alpha'}, 1)$:

Behavior of $\varepsilon\mapsto\psi^{\varepsilon}$

• Observe $\|\psi^{\varepsilon} - \psi^{0}\|_{2} \lesssim \varepsilon^{1+\alpha'}$:

Difference of Costs • Observe $\left| W_{2,\varepsilon}^2(\rho,\mu) - W_2^2(\rho,\mu) - \varepsilon^2 \frac{\pi^2}{12} \sum_{i < j} \frac{w_{ij}}{\|y_i - y_j\|} \right| \lesssim \varepsilon^{2+\alpha'}$:

Thank you for your attention!

References I

- Adams, S., Dirr, N., Peletier, M. A., and Zimmer, J. (2011). From a Large-Deviations Principle to the Wasserstein Gradient Flow: A New Micro-Macro Passage. *Communications in Mathematical Physics*, 307(3):791.
- Altschuler, J., Niles-Weed, J., and Stromme, A. (2021). Asymptotics for semi-discrete entropic optimal transport.
- Altschuler, J., Weed, J., and Rigollet, P. (2017). Near-linear time approximation algorithms for optimal transport via sinkhorn iteration. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, *Advances in Neural Information Processing Systems 30*, pages 1964–1974. Curran Associates, Inc.
- Bercu, B. and Bigot, J. (2020). Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures. *Annals of Statistics*.
- Bernton, E., Ghosal, P., and Nutz, M. (2021). Entropic optimal transport: Geometry and large deviations.

References II

- Bertsekas, D. P. and Eckstein, J. (1988). Dual coordinate step methods for linear network flow problems. *Mathematical Programming*, 42(1):203–243.
- Brenier, Y. (1991). Polar factorization and monotone rearrangement of vector-valued functions. *Communications on Pure and Applied Mathematics*, 44(4):375–417.
- Cominetti, R. and Martín, J. S. (1994). Asymptotic analysis of the exponential penalty trajectory in linear programming. *Mathematical Programming*, 67(1):169–187.
- Conforti, G. and Tamanini, L. (2021). A formula for the time derivative of the entropic cost and applications. *Journal of Functional Analysis*, 280(11):108964.
- Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. In *Proceedings of the 26th International Conference* on Neural Information Processing Systems - Volume 2, NIPS'13, pages 2292–2300.

References III

- Duong, M. H., Laschos, V., and Renger, M. (2013). Wasserstein gradient flows from large deviations of many-particle limits. *ESAIM: Control*, *Optimisation and Calculus of Variations*, 19(4):1166–1188.
- Dvurechensky, P., Gasnikov, A., and Kroshnin, A. (2018). Computational optimal transport: Complexity by accelerated gradient descent is better than by sinkhorn's algorithm. In Dy, J. and Krause, A., editors, *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pages 1367–1376, Stockholmsmässan, Stockholm Sweden. PMLR.
- Erbar, M., Maas, J., and Renger, M. (2015). From large deviations to Wasserstein gradient flows in multiple dimensions. *Electronic Communications in Probability*, 20(none):1 – 12.
- Feydy, J. (2020). Analyse de données géométriques, au delà des convolutions. Theses, Université Paris-Saclay.

References IV

- Genevay, A., Chizat, L., Bach, F., Cuturi, M., and Peyré, G. (2019).
 Sample complexity of sinkhorn divergences. In Chaudhuri, K. and
 Sugiyama, M., editors, *Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics*, volume 89 of *Proceedings of Machine Learning Research*, pages 1574–1583. PMLR.
- Genevay, A., Cuturi, M., Peyré, G., and Bach, F. (2016). Stochastic optimization for large-scale optimal transport. In *Advances in neural information processing systems*, pages 3440–3448.
- Kosowsky, J. and Yuille, A. (1994). The invisible hand algorithm: Solving the assignment problem with statistical physics. *Neural Networks*, 7(3):477–490.
- Léonard, C. (2012). From the schrödinger problem to the monge-kantorovich problem. *Journal of Functional Analysis*, 262.
- Mena, G. and Niles-Weed, J. (2019). Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.

References V

- Mikami, T. (2004). Monge's problem with a quadratic cost by the zero-noise limit of h-path processes. *Probability Theory and Related Fields*, 129(2):245–260.
- Nutz, M. and Wiesel, J. (2021). Entropic optimal transport: Convergence of potentials.
- Pal, S. (2019). On the difference between entropic cost and the optimal transport cost. *arXiv: Probability*.
- Peyré, G. and Cuturi, M. (2019). Computational optimal transport. Foundations and Trends in Machine Learning, 11(5-6):355–607.
- Schmitzer, B. (2019). Stabilized sparse scaling algorithms for entropy regularized transport problems. SIAM J. Sci. Comput., 41(3):A1443–A1481.
- Weed, J. (2018). An explicit analysis of the entropic penalty in linear programming. In Bubeck, S., Perchet, V., and Rigollet, P., editors, *Conference On Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018*, volume 75 of *Proceedings of Machine Learning Research*, pages 1841–1855. PMLR.

Corollary (D., 2021): Let $0 < \varepsilon' \le \varepsilon$. For any $\alpha' \in (0, \alpha)$, $\left\|\psi^{\varepsilon} - \psi^{\varepsilon'}\right\|_{\infty} \lesssim \varepsilon^{\alpha'}(\varepsilon - \varepsilon').$

Remark: (ε-scaling) Assume we know an algorithm approx_psi such that

 $\widetilde{\psi^{arepsilon}} := \texttt{approx_psi}(
ho, \mu, arepsilon, \psi^{\textit{init}}) pprox \psi^{arepsilon}.$

Fast if ε big or $\left\|\psi^{\varepsilon} - \psi^{init}\right\|$ small.

Corollary (D., 2021): Let $0 < \varepsilon' \le \varepsilon$. For any $\alpha' \in (0, \alpha)$,

$$\left\|\psi^{\varepsilon}-\psi^{\varepsilon'}\right\|_{\infty}\lesssim \varepsilon^{\alpha'}(\varepsilon-\varepsilon').$$

Remark: (ε-scaling) Assume we know an algorithm approx_psi such that

$$\widetilde{\psi^arepsilon}:= extsf{approx_psi}(
ho,\mu,arepsilon,\psi^{ extsf{init}})pprox\psi^arepsilon.$$

Fast if ε big or $\left\|\psi^{\varepsilon}-\psi^{\textit{init}}\right\|$ small.

 ε -scaling approximates ψ^0 with $\widetilde{\psi^{\varepsilon_{\kappa}}}$ for some $K \in \mathbb{N}^*$, where:

$$\begin{array}{l} & \varepsilon_0 > 0 \ (\text{big}), \ \widehat{\psi}^{\varepsilon_0} := \texttt{approx_psi}(\rho, \mu, \varepsilon_0, \psi^{\textit{init}}), \\ & & \varepsilon_{k+1} = \varepsilon_k/2, \\ & & \widehat{\psi^{\varepsilon_{k+1}}} := \texttt{approx_psi}(\rho, \mu, \varepsilon_{k+1}, \widehat{\psi^{\varepsilon_k}}). \end{array}$$

Corollary (D., 2021): Let
$$0 < \varepsilon' \le \varepsilon$$
. For any $\alpha' \in (0, \alpha)$,
 $\left\|\psi^{\varepsilon} - \psi^{\varepsilon'}\right\|_{\infty} \lesssim \varepsilon^{\alpha'}(\varepsilon - \varepsilon').$

Remark: (ε-scaling) Assume we know an algorithm approx_psi such that

$$\widetilde{\psi^arepsilon}:= extsf{approx_psi}(
ho,\mu,arepsilon,\psi^{ extsf{init}}) pprox \psi^arepsilon.$$

Fast if ε big or $\left\|\psi^{\varepsilon} - \psi^{init}\right\|$ small.

 ε -scaling approximates ψ^0 with $\widetilde{\psi^{\varepsilon_{\kappa}}}$ for some $K \in \mathbb{N}^*$, where:

ε₀ > 0 (big), ψ̃_{e0} := approx_psi(ρ, μ, ε₀, ψ^{init}),
 ε_{k+1} = ε_k/2,
 ψ̃_{ek+1} := approx_psi(ρ, μ, ε_{k+1}, ψ̃_{ek}).
Hope that
$$\| ψ̃ek - ψεk+1 \|$$
 gets small as ε_k → 0. See for instance Kosowsky and Yuille (1994); Schmitzer (2019); Feydy (2020).

Corollary (D., 2021): Let $0 < \varepsilon' \leq \varepsilon$. For any $\alpha' \in (0, \alpha)$,

$$\left\|\psi^{\varepsilon}-\psi^{\varepsilon'}\right\|_{\infty}\lesssim \varepsilon^{\alpha'}(\varepsilon-\varepsilon').$$

Remark: (ε-scaling) Originally introduced for Bertsekas' auction algorithm (Bertsekas and Eckstein (1988)) for the N-assignment problem. Reduced worst case complexity:

$$O\left(\frac{\textit{N}^2}{\varepsilon}\right) \rightarrow O\left(\textit{N}^3\log\left(\frac{1}{\varepsilon}\right)\right)$$

in order to get an ε -approximate solution.

Theorem (D., 2021): For any
$$\varepsilon > 0$$
 and $v \in \mathbb{R}^N$,
 $\operatorname{Var}_{\mu}(v) \leq \left(e^{R_{\mathcal{Y}}\operatorname{diam}(\mathcal{X})}\frac{M_{\rho}}{m_{\rho}} + \varepsilon\right) \langle v | \nabla^2 \mathcal{K}^{\varepsilon}(\psi^{\varepsilon}) v \rangle.$

Notice that

$$abla^2 \mathcal{K}^arepsilon(\psi) = rac{1}{arepsilon} \mathbb{E}_{\mathsf{x} \sim
ho} \left(\mathrm{diag}(\pi^arepsilon_\mathsf{x}(\psi)) - \pi^arepsilon_\mathsf{x}(\psi) \pi^arepsilon_\mathsf{x}(\psi)^ op
ight),$$

where $\pi_x^{\varepsilon}(\psi) \in \mathbb{R}^N$ and $\forall i \in \{1, \dots, N\}$,

$$\pi_{x}^{\varepsilon}(\psi)_{i} = \frac{\exp\left(\frac{\langle x|y_{i}\rangle - \psi_{i}}{\varepsilon}\right)}{\sum_{j=1}^{N}\exp\left(\frac{\langle x|y_{j}\rangle - \psi_{j}}{\varepsilon}\right)}$$

Theorem (D., 2021): For any
$$\varepsilon > 0$$
 and $v \in \mathbb{R}^N$,
 $\operatorname{Var}_{\mu}(v) \leq \left(e^{R_{\mathcal{Y}}\operatorname{diam}(\mathcal{X})}\frac{M_{\rho}}{m_{\rho}} + \varepsilon\right) \langle v | \nabla^2 \mathcal{K}^{\varepsilon}(\psi^{\varepsilon}) v \rangle.$

Notice that

$$\nabla^2 \mathcal{K}^{\varepsilon}(\psi) = \frac{1}{\varepsilon} \mathbb{E}_{\mathsf{x} \sim \rho} \left(\operatorname{diag}(\pi_\mathsf{x}^{\varepsilon}(\psi)) - \pi_\mathsf{x}^{\varepsilon}(\psi) \pi_\mathsf{x}^{\varepsilon}(\psi)^\top \right).$$

▶ Introduce $I : \mathbb{R}^N \to \mathbb{R}, \psi \mapsto \log(\int_{\mathcal{X}} e^{-\psi^{c,\varepsilon}})$. Notice that I is C^2 :

$$\begin{aligned} \nabla^2 I(\psi^{\varepsilon}) &= -\frac{1}{\varepsilon} \mathbb{E}_{x \sim \tilde{\rho}^{\varepsilon}} (\operatorname{diag}(\pi_x^{\varepsilon}(\psi^{\varepsilon})) - \pi_x^{\varepsilon}(\psi^{\varepsilon}) \pi_x^{\varepsilon}(\psi^{\varepsilon})^{\top}) \\ &+ \mathbb{E}_{x \sim \tilde{\rho}^{\varepsilon}} \pi_x^{\varepsilon}(\psi^{\varepsilon}) \pi_x^{\varepsilon}(\psi^{\varepsilon})^{\top} - \mathbb{E}_{x \sim \tilde{\rho}^{\varepsilon}} \pi_x^{\varepsilon}(\psi^{\varepsilon}) \mathbb{E}_{x \sim \tilde{\rho}^{\varepsilon}} \pi_x^{\varepsilon}(\psi^{\varepsilon})^{\top}, \end{aligned}$$

where
$$\tilde{\rho}^{\varepsilon} := \frac{e^{-(\psi^{\varepsilon})^{c,\varepsilon}}}{\int_{\mathcal{X}} e^{-(\psi^{\varepsilon})^{c,\varepsilon}}}.$$

Theorem (D., 2021): For any $\varepsilon > 0$ and $v \in \mathbb{R}^N$,

$$\mathbb{V}\mathrm{ar}_{\mu}(\mathbf{v}) \leq \left(e^{\mathcal{R}_{\mathcal{Y}}\mathrm{diam}(\mathcal{X})}rac{M_{
ho}}{m_{
ho}} + arepsilon
ight) \langle \mathbf{v}|
abla^{2}\mathcal{K}^{arepsilon}(\psi^{arepsilon})\mathbf{v}
angle.$$

▶ $I: \psi \mapsto \log(\int_{\mathcal{X}} e^{-\psi^{c,\varepsilon}})$ is concave: Let $\psi, \varphi \in \mathbb{R}^N, 0 < \lambda < 1$. For any $u, v \in \mathcal{X}$, we have:

$$\begin{split} \left(\lambda\psi + (1-\lambda)\varphi\right)^{c,\varepsilon} &(\lambda u + (1-\lambda)v) \\ &= \varepsilon \log\left(\sum_{i=1}^{N} e^{\frac{\langle\lambda u + (1-\lambda)v|y_i\rangle - (\lambda\psi + (1-\lambda)\varphi)(y_i)}{\varepsilon}}\right) \\ &= \varepsilon \log\left(\sum_{i=1}^{N} \left(e^{\frac{\langle u|y_i\rangle - \psi(y_i)}{\varepsilon}}\right)^{\lambda} \left(e^{\frac{\langle v|y_i\rangle - \varphi(y_i)}{\varepsilon}}\right)^{1-\lambda}\right) \\ &\leq \varepsilon \log\left[\left(\sum_{i=1}^{N} e^{\frac{\langle u|y_i\rangle - \psi(y_i)}{\varepsilon}}\right)^{\lambda} \left(\sum_{i=1}^{N} e^{\frac{\langle v|y_i\rangle - \varphi(y_i)}{\varepsilon}}\right)^{1-\lambda}\right] \\ &= \lambda\psi^{c,\varepsilon}(u) + (1-\lambda)\varphi^{c,\varepsilon}(v). \end{split}$$

Theorem (D., 2021): For any $\varepsilon > 0$ and $v \in \mathbb{R}^N$,

$$\mathbb{V}\mathrm{ar}_{\mu}(\mathbf{v}) \leq \left(e^{\mathcal{R}_{\mathcal{Y}}\mathrm{diam}(\mathcal{X})}rac{M_{
ho}}{m_{
ho}} + arepsilon
ight)\langle\mathbf{v}|
abla^{2}\mathcal{K}^{arepsilon}(\psi^{arepsilon})\mathbf{v}
angle.$$

▶ $I: \psi \mapsto \log(\int_{\mathcal{X}} e^{-\psi^{\epsilon,\epsilon}})$ is concave: Let $\psi, \varphi \in \mathbb{R}^N, 0 < \lambda < 1$. For any $u, v \in \mathcal{X}$, we have:

$$ig(\lambda\psi+(1-\lambda)arphiig)^{c,arepsilon}(\lambda u+(1-\lambda)m{v})\leq\lambda\psi^{c,arepsilon}(u)+(1-\lambda)arphi^{c,arepsilon}(m{v}).$$

Denoting

$$\begin{split} h(u) &= e^{-(\lambda\psi+(1-\lambda)\varphi)^{c,\varepsilon}(u)},\\ f(u) &= e^{-\psi^{c,\varepsilon}(u)}, \quad g(u) &= e^{-\varphi^{c,\varepsilon}(u)}, \end{split}$$

we thus have shown that

$$h(\lambda u + (1-\lambda)v) \geq f(u)^{\lambda}g(v)^{1-\lambda}.$$

 \implies Prékopa–Leindler inequality:

$$\int_{\mathcal{X}} h \geq \left(\int_{\mathcal{X}} f\right)^{\lambda} \left(\int_{\mathcal{X}} g\right)^{1-\lambda}$$

Theorem (D., 2021): For any
$$\varepsilon > 0$$
 and $v \in \mathbb{R}^N$,
 $\operatorname{Var}_{\mu}(v) \leq \left(e^{R_{\mathcal{Y}}\operatorname{diam}(\mathcal{X})}\frac{M_{\rho}}{m_{\rho}} + \varepsilon\right) \langle v | \nabla^2 \mathcal{K}^{\varepsilon}(\psi^{\varepsilon}) v \rangle.$

► $I: \psi \mapsto \log(\int_{\mathcal{X}} e^{-\psi^{\epsilon,\epsilon}})$ is concave: Prékopa–Leindler inequality:

$$\int_{\mathcal{X}} h \geq \left(\int_{\mathcal{X}} f\right)^{\lambda} \left(\int_{\mathcal{X}} g\right)^{1-\lambda}$$

 \implies *I* is concave:

$$egin{aligned} & \mathcal{U}(\lambda\psi\!+\!(1-\lambda)arphi) = \log\left(\int_{\mathcal{X}}h
ight) \ & \geq \lambda\log\left(\int_{\mathcal{X}}f
ight) + (1-\lambda)\log\left(\int_{\mathcal{X}}g
ight) \ & = \lambda \mathcal{U}(\psi) + (1-\lambda)\mathcal{U}(arphi). \end{aligned}$$

Theorem (D., 2021): For any
$$\varepsilon > 0$$
 and $v \in \mathbb{R}^N$,
 $\operatorname{Var}_{\mu}(v) \leq \left(e^{R_{\mathcal{Y}}\operatorname{diam}(\mathcal{X})}\frac{M_{\rho}}{m_{\rho}} + \varepsilon\right) \langle v | \nabla^2 \mathcal{K}^{\varepsilon}(\psi^{\varepsilon}) v \rangle.$

Notice that

$$\nabla^2 \mathcal{K}^{\varepsilon}(\psi) = \frac{1}{\varepsilon} \mathbb{E}_{\mathsf{x} \sim \rho} \left(\operatorname{diag}(\pi_{\mathsf{x}}^{\varepsilon}(\psi)) - \pi_{\mathsf{x}}^{\varepsilon}(\psi) \pi_{\mathsf{x}}^{\varepsilon}(\psi)^{\top} \right).$$

▶ Introduce $I : \mathbb{R}^N \to \mathbb{R}, \psi \mapsto \log(\int_{\mathcal{X}} e^{-\psi^{c,\varepsilon}})$. Notice that I is C^2 and concave:

$$\begin{split} \nabla^2 \textit{I}(\psi^{\varepsilon}) &= -\frac{1}{\varepsilon} \mathbb{E}_{x \sim \tilde{\rho}^{\varepsilon}} (\operatorname{diag}(\pi_x^{\varepsilon}(\psi^{\varepsilon})) - \pi_x^{\varepsilon}(\psi^{\varepsilon})\pi_x^{\varepsilon}(\psi^{\varepsilon})^{\top}) \\ &+ \mathbb{E}_{x \sim \tilde{\rho}^{\varepsilon}} \pi_x^{\varepsilon}(\psi^{\varepsilon})\pi_x^{\varepsilon}(\psi^{\varepsilon})^{\top} - \mathbb{E}_{x \sim \tilde{\rho}^{\varepsilon}} \pi_x^{\varepsilon}(\psi^{\varepsilon}) \mathbb{E}_{x \sim \tilde{\rho}^{\varepsilon}} \pi_x^{\varepsilon}(\psi^{\varepsilon})^{\top} \leq 0, \end{split}$$

where $\tilde{\rho}^{\varepsilon} := rac{e^{-(\psi^{\varepsilon})^{c,\varepsilon}}}{\int_{\mathcal{X}} e^{-(\psi^{\varepsilon})^{c,\varepsilon}}}.$

Upper bound on $\left\|\frac{\partial}{\partial \varepsilon} (\nabla \mathcal{K}^{\varepsilon})(\psi^{\varepsilon})\right\|_{\infty}$

Theorem (D., 2021): For any
$$\varepsilon > 0$$
,

$$\left.\frac{\partial}{\partial\varepsilon}(\nabla\mathcal{K}^{\varepsilon})(\psi^{\varepsilon})\right\|_{\infty}\lesssim\varepsilon^{\alpha'}.$$

► We have

$$[\frac{\partial}{\partial\varepsilon}(\nabla\mathcal{K}^{\varepsilon})(\psi^{\varepsilon})]_{i} = \int_{\mathcal{X}} \sum_{j\neq i} \left(\frac{f_{i}^{\varepsilon}(x) - f_{j}^{\varepsilon}(x)}{\varepsilon^{2}}\right) \pi_{x,j}^{\varepsilon} \pi_{x,i}^{\varepsilon} \mathrm{d}\rho(x),$$

where
$$\forall j, f_j^{\varepsilon}(x) = \langle x | y_j \rangle - \psi_j^{\varepsilon}$$
 and $\pi_{x,j}^{\varepsilon} = \frac{\exp(\frac{f_j^{\varepsilon}(x)}{\varepsilon})}{\sum_k \exp(\frac{f_k^{\varepsilon}(x)}{\varepsilon})}$.

Upper bound on $\left\|\frac{\partial}{\partial \varepsilon} (\nabla \mathcal{K}^{\varepsilon})(\psi^{\varepsilon})\right\|_{\infty}$

We have:

$$[\frac{\partial}{\partial\varepsilon}(\nabla\mathcal{K}^{\varepsilon})(\psi^{\varepsilon})]_{i} = \int_{\mathcal{X}} \sum_{j\neq i} \left(\frac{f_{i}^{\varepsilon}(x) - f_{j}^{\varepsilon}(x)}{\varepsilon^{2}}\right) \pi_{x,j}^{\varepsilon} \pi_{x,i}^{\varepsilon} \mathrm{d}\rho(x).$$

Key technical result: for any $\eta, \gamma > 0$,

$$egin{aligned} &[rac{\partial}{\partialarepsilon}(
abla \mathcal{K}^arepsilon)(\psi)]_i \lesssim rac{1}{arepsilon^2} e^{-\eta/arepsilon} + rac{\eta^{2+lpha}}{arepsilon^2} \ &+ rac{\gamma^2}{arepsilon^2} \left(\eta + e^{-\eta/arepsilon}
ight) \ &+ rac{1}{arepsilon^2} e^{- ilde\gamma/arepsilon} \left(\eta + arepsilon \eta e^{\eta/arepsilon} \ &- arepsilon^2 (e^{\eta/arepsilon} - 1)
ight), \end{aligned}$$

where
$$\tilde{\gamma} = \gamma \delta - \frac{\operatorname{diam}(\mathcal{Y})^2}{\delta} \eta$$
 and $\delta = \min_{i \neq j} ||y_i - y_j|| > 0.$