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Introduction

I Numerous problems involve the comparison of point clouds/probability
measures (e.g. in astronomy, shape recognition, image processing, generative modelling,
large-scale learning, etc).

Figure 1: Point cloud comparison may appear in astronomy, 3D shape recognition
or color transfer (from [Yu et al., 2012, Wu et al., 2015, Paty et al., 2019]).
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I Numerous problems involve the comparison of point clouds/probability
measures (e.g. in astronomy, shape recognition, image processing, generative modelling,
large-scale learning, etc).

I Wasserstein distances, provided by Optimal Transport (OT), are natural
to perform these comparisons.
Wasserstein distances.

I X , Y compact and convex subsets of Rd .
I α, β probability measures on X , Y respectively.

Wp
p(α, β) := min

π

{∫
X×Y

||x − y ||pdπ(x , y) | π ∈ U(α, β)
}
,

where U(α, β) = {π ∈ P(X × Y) | (PX )#π = α and (PY )#π = β} with
PX (x , y) = x and PY (x , y) = y .
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to perform these comparisons.
Wasserstein distances.

I X , Y compact and convex subsets of Rd .
I α, β probability measures on X , Y respectively.

Wp
p(α, β) := min

π

{∫
X×Y

||x − y ||pdπ(x , y) | π ∈ U(α, β)
}
,

where U(α, β) = {π ∈ P(X × Y) | (PX )#π = α and (PY )#π = β} with
PX (x , y) = x and PY (x , y) = y .

They enable notions such as:
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Introduction

I In practice: for αn = 1
n
∑n

i=1 δxi and βn = 1
n
∑n

i=1 δyi , computing
Wp

p(αn, βm) corresponds to solving a LP problem.
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i=1 δyi , computing
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Several algorithms, e.g.
Algorithm Complexity

Network Simplex O(n3 log(n)2)
Auction O(n3)

Sinkhorn (τ -approximate OT ) O(n2 log(n)τ−3)
[Peyré and Cuturi, 2019]
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I In practice: for αn = 1
n
∑n

i=1 δxi and βn = 1
n
∑n

i=1 δyi , computing
Wp

p(αn, βm) corresponds to solving a LP problem.

Several algorithms, e.g.
Algorithm Complexity

Network Simplex O(n3 log(n)2)
Auction O(n3)

Sinkhorn (τ -approximate OT ) O(n2 log(n)τ−3)
[Peyré and Cuturi, 2019]

1 solving of OT =⇒ high computational costs.

To get the distance matrix of k point clouds, O(k2) OT problems to solve:
can be prohibitive for large values of k.
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Introduction

I In practice: solving numerous OT problems can be computationally prohibitive.

Wasserstein spaces are curved, hence non linear.

Figure 2: (P2,W2) is curved.

No "closed-form" notions of sum or mean in (Pp,Wp) (e.g. Wasserstein
barycenters are defined as arg min’s).
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Introduction

I In practice: solving numerous OT problems can be computationally prohibitive.

Wasserstein spaces are curved, hence non linear.

Figure 3: (P2,W2) is curved.

No "closed-form" notions of sum or mean in (Pp,Wp) (e.g. Wasserstein
barycenters are defined as arg min’s).
In ML, can be interesting to have an Hilbertian structure: impossible in
Wasserstein spaces.
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Introduction

I In practice: solving numerous OT problems can be computationally prohibitive.
Wasserstein spaces are curved and not Hilbertian.

I Here: we propose a measure embedding into a Hilbert space that
conserves some of the (unregularized) Wasserstein geometry.
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Proposed workaround: Monge embedding

Let ρ be a fixed a.c. measure on X .

By [Brenier, 1991], for any µ ∈ P(Y),

min
π

{∫
X×Y

||x − y ||2dπ(x , y) | π ∈ U(ρ, µ)
}

=

min
T

{∫
X
||x − T (x)||2dρ(x) | T : X → Y,T#ρ = µ

}
,

where T#ρ is s.t. ∀Y ⊆ Y, T#ρ(Y ) = ρ(T−1(Y )).

µ

νN = 1
N

∑
i
δyi

ρ

Tµ

TνN
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Definition (Monge embedding)
The Monge embedding is the mapping

P(Y)→ L2(ρ,Rd),
µ 7→ Tµ.
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Proposed workaround: Monge embedding
Let ρ be a fixed a.c. measure on X .

Definition (Monge embedding)
For all µ ∈ P(Y), denote Tµ the solution of Monge’s
OT problem between ρ and µ for the squarred
Euclidean cost.

The Monge embedding is the mapping

P(Y)→ L2(ρ,Rd),
µ 7→ Tµ.

µ

νN = 1
N

∑
i
δyi

ρ

Tµ

TνN

Remarks
I When µ is discrete: semi-discrete OT. Efficiently solved in low dimensions with

second-order methods [Kitagawa et al., 2019] and in higher dimensions with
stochastic optimization methods [Genevay et al., 2016].

I L2(ρ)-Distance matrix of k point-clouds =⇒ k OT problems to solve + O(k2)
distance computations on Hilbertian/Euclidean data.
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Proposed workaround: Monge embedding
Let ρ be a fixed a.c. measure on X .

Definition (Monge embedding)
For all µ ∈ P(Y), denote Tµ the solution of Monge’s
OT problem between ρ and µ for the squarred
Euclidean cost.

The Monge embedding is the mapping

P(Y)→ L2(ρ,Rd),
µ 7→ Tµ.

µ

νN = 1
N

∑
i
δyi

ρ

Tµ

TνN

Main result: bi-Hölder behavior of µ 7→ Tµ

∀µ, ν ∈ P(Y), W2(µ, ν) ≤ ‖Tµ − Tν‖L2(ρ) ≤ Cd,X ,YW2(µ, ν)2/15.
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Geometric interpretation of the Monge embedding
Monge embedding as logarithm map (similar construction and
interpretation in the Linear Optimal Transportation Framework of
[Wang et al., 2013])

( ( ), W2)

T = IdL2( )

W2( , )

L2( )T T
W2, ( , )

T T

where W2,ρ(µ, ν) := ||Tµ − Tν ||L2(ρ).

Riemannian geometry Optimal transport
Point x ∈ M µ ∈ P2(Rd )

Geodesic distance dg (x, y) W2(µ, ν)
Tangent space TρM TρP2(Rd ) ≈ L2(ρ)

Inverse exponential map exp−1(x) ∈ TρM Tµ ∈ L2(ρ)
Distance in tangent space

∥∥exp−1(x)− exp−1(y)
∥∥

g(ρ)

∥∥Tµ − Tν
∥∥

L2(ρ)

What amount of the Wasserstein geometry is preserved by the embedding
µ 7→ Tµ ?
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Immediate properties of the Monge embedding

µ 7→ Tµ is discriminative

I µ 7→ Tµ is injective
(by definition of the push-forward operator).

I µ 7→ Tµ is reverse-Lipschitz: ||Tµ − Tν ||L2(ρ) ≥W2(µ, ν)
(γ := (Tµ,Tν )#ρ defines an admissible coupling between µ and ν).

µ 7→ Tµ is not better than 1
2 -Hölder

I Take ρ := 1
π
LebB(0,1) on R2 and µθ :=

δxθ+δxθ+π
2 with xθ = (cos(θ), sin(θ)). Then

||Tµθ − Tµθ+δ ||
2
L2(ρ)

≥ Cδ while W2(µθ, µθ+δ) ≤ Cδ.
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Immediate properties of the Monge embedding

Theorem ( 12 -Hölder continuity near a regular measure, similar to a result
of [Gigli, 2011])
Let µ, ν ∈ P(Y) and assume that Tµ is K -Lipschitz. Then,

‖Tµ − Tν‖L2(ρ) ≤ 2
√

MXKW1(µ, ν)1/2,

where MX is s.t. X ⊂ B(0,MX ).

Very strong hypothesis on µ.

Theorem (General Hölder-continuity as a corollary of [Berman, 2018],
Proposition 3.4)
If ρ ≡ 1 on X with |X | = 1, then for any measures µ and ν in P(Y),

‖Tµ − Tν‖L2(ρ) ≤ Cd,X ,YW1(µ, ν)
1

(d+2)2(d−1) .

High dependence on the ambient dimension. Optimal exponent?
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Stability of the Monge embedding

Theorem (Dimension-independent Hölder continuity)
If ρ ≡ 1 on X convex with |X | = 1, then for any measures µ and ν in P(Y),

‖Tν − Tµ‖L2(X ) ≤ Cd,X ,YW1(µ, ν)2/15.

Remarks
I Hölder exponent independent of the ambient dimension.
I No hypothesis on µ and ν except that they are compactly supported.
I No regularization.
I Optimality: best exponent belongs to [ 2

15 ,
1
2 ].

11/14



Stability of the Monge embedding

Theorem (Dimension-independent Hölder continuity)
If ρ ≡ 1 on X with |X | = 1, then for any measures µ and ν in P(Y),

‖Tν − Tµ‖L2(X ) ≤ Cd,X ,YW1(µ, ν)2/15.

Remarks
I Hölder exponent independent of the ambient dimension.
I No hypothesis on µ and ν except that they are compactly supported.
I No regularization.
I Optimality: best exponent belongs to [ 2

15 ,
1
2 ].

I Proof ingredients:
I Discrete µ and ν (general case by density).

11/14



Stability of the Monge embedding

Theorem (Dimension-independent Hölder continuity)
If ρ ≡ 1 on X with |X | = 1, then for any measures µ and ν in P(Y),

‖Tν − Tµ‖L2(X ) ≤ Cd,X ,YW1(µ, ν)2/15.

Remarks
I Hölder exponent independent of the ambient dimension.
I No hypothesis on µ and ν except that they are compactly supported.
I No regularization.
I Optimality: best exponent belongs to [ 2

15 ,
1
2 ].

I Proof ingredients:
I Discrete µ and ν (general case by density).
I A Discrete Poincaré-Wirtinger inequality =⇒ local estimate of the strong

convexity of the Kantorovich functional (non trivial because of the lack of
regularization). Gives:

‖ψν − ψµ‖L2(µ+ν) ≤ CW1(µ, ν)
1
3 .
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Stability of the Monge embedding
Theorem (Dimension-independent Hölder continuity)
If ρ ≡ 1 on X with |X | = 1, then for any measures µ and ν in P(Y),

‖Tν − Tµ‖L2(X ) ≤ Cd,X ,YW1(µ, ν)2/15.

Remarks
I Hölder exponent independent of the ambient dimension.
I No hypothesis on µ and ν except that they are compactly supported.
I No regularization.
I Optimality: best exponent belongs to [ 2

15 ,
1
2 ].

I Proof ingredients:
I Discrete µ and ν (general case by density).
I A Discrete Poincaré-Wirtinger inequality =⇒ local estimate of the strong

convexity of the Kantorovich functional (non trivial because of the lack of
regularization).

I An inverse Poincaré-Wirtinger inequality gives:

‖Tν − Tµ‖L2(ρ) = ‖∇φν −∇φµ‖L2(ρ) ≤ CW1(µ, ν)
2
15 .
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Numerical illustrations

I Let X = Y = [0, 1]2, ρ ≡ 1 on X .

I Project L2(ρ,R2) onto a finite dimensional space.

Distance approximation: W2,ρ vs. W2
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W2,ρ vs. W2 between point clouds sampled from a Gaussian, a Mixture of 4 Gaussian and a
uniform distribution.
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Numerical illustrations

Wasserstein barycenter [Agueh and Carlier, 2011] approximation
Approximate argminµ

∑S
s=1 λsW2

2(µ, µs) with µ =
(∑S

s=1 λsTµs

)
#
ρ.

Barycenters of 4 point clouds. Weights (λs )s are bilinear w.r.t. the corners of the square.

Push-forwards of the 20 centroids after clustering of the Monge embeddings of the MNIST
training set.
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Conclusion

µ 7→ Tµ is an Hilbert space embedding that:
I Linearizes to some extent the 2-Wasserstein space.
I Is bi-Hölder continuous w.r.t. W2.
I Allows for the direct use of generic ML algorithms on measure data thanks

to the linearity and Hilbertian structure of L2(ρ).

Future work:
I Not compactly supported target measures.
I More general source measures.
I Statistical properties: concentration and sample complexity of the defined

distances.
I Applications: compact encoding of Tµ ∈ L2(ρ) that scales well to high

dimensions.
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