Quantitative Stability of Optimal Transport Maps and
Linearization of the 2-Wasserstein Space

Alex Delalande™ *
with Quentin Mérigot™ and Frédéric Chazal*

Laboratoire de Mathématiques d’'Orsay, Université Paris-Sud”
DataShape team, INRIA Saclay™

AISTATS 2020

™ UNIVERSITE

;>wP/\RIS -
S 7
“a—

1/14



Introduction

» Numerous problems involve the comparison of point clouds/probability
measures (e.g. in astronomy, shape recognition, image processing, generative modelling,
large-scale learning, etc).

Figure 1: Point cloud comparison may appear in astronomy, 3D shape recognition
or color transfer (from [Yu et al., 2012, Wu et al., 2015, Paty et al., 2019]).

2/14



Introduction

» Numerous problems involve the comparison of point clouds/probability
measures (e.g. in astronomy, shape recognition, image processing, generative modelling,
large-scale learning, etc).

> Wasserstein distances, provided by Optimal Transport (OT), are natural
to perform these comparisons.

3/14



Introduction

» Numerous problems involve the comparison of point clouds/probability
measures (e.g. in astronomy, shape recognition, image processing, generative modelling,
large-scale learning, etc).

> Wasserstein distances, provided by Optimal Transport (OT), are natural
to perform these comparisons.

Wasserstein distances.

> X, Y compact and convex subsets of RY.

> «, B probability measures on X, ) respectively.
Wp(e, B) := min {/ ||Xylpd7f(x,y)|7r€U(a,B)},
T XXy

where U(a,B) = {m € P(X x Y) | (Px)xm = o and (Py)um = B} with
Px(x,y) = x and Py(x,y) = y.
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Introduction

» Numerous problems involve the comparison of point clouds/probability
measures (e.g. in astronomy, shape recognition, image processing, generative modelling,
large-scale learning, etc).

> Wasserstein distances, provided by Optimal Transport (OT), are natural
to perform these comparisons.

Wasserstein distances.

> X, Y compact and convex subsets of RY.

> «, B probability measures on X, ) respectively.
Wh(e, B) := min {/ ||Xy|pd7f(x,y)|7r€U(a,,8)},
T xxY

where U(a, B) = {m € P(X x Y) | (Px)xm = o and (Py)um = B} with
Px(x,y) = x and Py(x,y) = y.

They enable notions such as:

Wo(F1. T ) < Wi )
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> In practice: for a, =1 >"" 6, and B, =137 4, computing
W5 (an, Bm) corresponds to solving a LP problem.
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Introduction

> In practice: for oy = 13" 4, and B, = 13" 6, computing
W5 (an, Bm) corresponds to solving a LP problem.

Several algorithms, e.g.

Algorithm Complexity
Network Simplex O(n? log(n)?)
Auction o(n?)

Sinkhorn (7-approximate OT) | O(n?log(n)r~3)
[Peyré and Cuturi, 2019]
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Introduction

> In practice: for a, = >"" 6, and B, =137 4, computing

n n

W5 (an, Bm) corresponds to solving a LP problem.

Several algorithms, e.g.

Algorithm Complexity
Network Simplex O(n? log(n)?)
Auction o(n?)

Sinkhorn (7-approximate OT) | O(n?log(n)T~3)
[Peyré and Cuturi, 2019]

1 solving of OT = high computational costs.

To get the distance matrix of k point clouds, O(k?*) OT problems to solve:
can be prohibitive for large values of k.
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Introduction

» In practice: solving numerous OT problems can be computationally prohibitive.

Wasserstein spaces are curved, hence non linear.

w, Waln, V),/V

Figure 2: (P2, W2) is curved.

No "closed-form" notions of sum or mean in (P,, W,) (e.g. Wasserstein
barycenters are defined as arg min’s).
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Introduction

P In practice: solving numerous OT problems can be computationally prohibitive.

Wasserstein spaces are curved, hence non linear.

. Walww) v

Figure 3: (P2, W2) is curved.

No "closed-form" notions of sum or mean in (P,, W,) (e.g. Wasserstein

barycenters are defined as arg min's).
In ML, can be interesting to have an Hilbertian structure: impossible in

Wasserstein spaces.
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Introduction

» In practice: solving numerous OT problems can be computationally prohibitive.
Wasserstein spaces are curved and not Hilbertian.

» Here: we propose a measure embedding into a Hilbert space that
conserves some of the (unregularized) Wasserstein geometry.
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Proposed workaround: Monge embedding

Let p be a fixed a.c. measure on X.

By [Brenier, 1991], for any n € P()),

min {/ Ix — ylPdn(x,y) | 7 € u(p,u)}
X XY

m_’i_n {/ [[x = T)|Pdp(x) | T: X = Y, T#p—u},
X

where Typisst. VY C Y, Tup(Y) = p(T7L(Y)).
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Let p be a fixed a.c. measure on X.

By [Brenier, 1991], for any u € P(}),
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m_’i_n {/ [Ix = T()|Pdp(x) | T: X = Y, T#pu},
EY

where Typisst. VY C Y, Tup(Y) = p(T7L(Y)).

A solution T, always exists and is uniquely defined as the
gradient T, = V¢, of a convex function ¢, that minimizes
the Kantorovich functional

K(¢u):/ ¢udP+/¢udIJ1
X y

where 1), = ¢}, is the Legendre transform of ¢,,.
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Proposed workaround: Monge embedding
Let p be a fixed a.c. measure on X.

Definition (Monge embedding)

For all x € P(Y), denote T, the solution of Monge's
OT problem between p and p for the squarred
Euclidean cost.

The Monge embedding is the mapping

P(Y) — L*(p,RY),
pw= Ty

Remarks

» When p is discrete: semi-discrete OT. Efficiently solved in low dimensions with
second-order methods [Kitagawa et al., 2019] and in higher dimensions with
stochastic optimization methods [Genevay et al., 2016].

> 12(p)-Distance matrix of k point-clouds = k OT problems to solve + O(k?)
distance computations on Hilbertian/Euclidean data.
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Proposed workaround: Monge embedding

Let p be a fixed a.c. measure on X.

Definition (Monge embedding)

For all x € P(Y), denote T, the solution of Monge's
OT problem between p and p for the squarred
Euclidean cost.

The Monge embedding is the mapping

P(Y) = L(p,RY),
pw= Ty

Main result: bi-Holder behavior of i +— T,

Vu,v € 'P(y), W2(:U’7 V) < Ty — TVHLZ(p) < Cd,X,yW2(/J7 V)Q/ls'
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Geometric interpretation of the Monge embedding

Monge embedding as logarithm map (similar construction and
interpretation in the Linear Optimal Transportation Framework of
[Wang et al., 2013])

) u) /
(P(), Wah | Iz ,//V
it L
/ 7
1
T — LT, La(p

Wo ()

TD: 2(p)
where Wo ,(p, v) == [Ty — Tl |L2(p)'
‘ Riemannian geometry ‘ Optimal transport
Point x e M e PQ(Rd)
Geodesic distance dg(x,y) Wo(p, v)
Tangent space ToM 7},7’2(]1{':’) ~ L2%(p)
Inverse exponential map expTl(x) € ToM T, € L:(p)
Distance in tangent space | exp_l(x) — exp_l(y)H H Ty — Ty ||
&(p) L2

What amount of the Wasserstein geometry is preserved by the embedding
= T, 7
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Immediate properties of the Monge embedding
i — T, is discriminative

» u— T, is injective
(by definition of the push-forward operator).

» 1 +— T, is reverse-Lipschitz: ‘ [T = Tolliege) = Wa(p, v)
(v := (T, Tu)yp defines an admissible coupling between p and v).

p+— T, is not better than J-Hélder

Sxpy +6
P Take p := %LebB(O,l) on R? and pg = % with xg = (cos(8), sin(0)). Then

Tig = Tugisllia,) = C8 while Walug, nos) < C5.

Ty

. T
T4 O+
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Immediate properties of the Monge embedding

Theorem (%—Hélder continuity near a regular measure, similar to a result
of [Gigli, 2011])
Let u,v € P(Y) and assume that T, is K-Lipschitz. Then,

||TH - TV”Lz(p) <2 \% Mwal(/JﬂV)l/Q’

where My is s.t. X C B(0, Mx).

Very strong hypothesis on .

Theorem (General Holder-continuity as a corollary of [Berman, 2018],
Proposition 3.4)

If p=1on X with |[X| =1, then for any measures p and v in P(}),

1
[ Tw = Tolliage < Cae,y Wa(p, v) @220

High dependence on the ambient dimension. Optimal exponent?
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Stability of the Monge embedding

Theorem (Dimension-independent Hélder continuity)
If p=1 on X convex with |X| =1, then for any measures u and v in P(}),

T, — TMHLZ(X) < Cox yWa(p, V)Z/IS-

Remarks
» Holder exponent independent of the ambient dimension.
» No hypothesis on u and v except that they are compactly supported.
» No regularization.

» Optimality: best exponent belongs to [%, %]

11/14



Stability of the Monge embedding

Theorem (Dimension-independent Hoélder continuity)
If p=1on X with |[X| =1, then for any measures x and v in P(}),

H T, - THHLQ(X) < Cd,X,le(Mv V)2/15~

Remarks
» Holder exponent independent of the ambient dimension.
No hypothesis on u and v except that they are compactly supported.
No regularization.
S 2 1
Optimality: best exponent belongs to [, 5].

Proof ingredients:
> Discrete p and v (general case by density).
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Stability of the Monge embedding

Theorem (Dimension-independent Hélder continuity)
If p=1o0n X with |[X| =1, then for any measures p and v in P(}),

H T, — THHLQ(X) < Cd,X,yWI(/.L, V)2/15'

Remarks
» Holder exponent independent of the ambient dimension.
» No hypothesis on u and v except that they are compactly supported.
» No regularization.
> Optimality: best exponent belongs to [, 1].

» Proof ingredients:

> Discrete p and v (general case by density).
» A Discrete Poincaré-Wirtinger inequality — local estimate of the strong
convexity of the Kantorovich functional (non trivial because of the lack of

regularization). Gives:

1
10 = Dlligury < CWa )3
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Stability of the Monge embedding

Theorem (Dimension-independent Hélder continuity)
If p=1on X with |[X| =1, then for any measures p and v in P()),

H T, — THHLQ(X) < Cd,X,yWI(/.L, V)2/15'

Remarks
» Holder exponent independent of the ambient dimension.
No hypothesis on u and v except that they are compactly supported.
No regularization.
Optimality: best exponent belongs to [, 1].

Proof ingredients:

> Discrete p and v (general case by density).

» A Discrete Poincaré-Wirtinger inequality — local estimate of the strong
convexity of the Kantorovich functional (non trivial because of the lack of
regularization).

» An inverse Poincaré-Wirtinger inequality gives:

2
170 = Tullizgy = IVor = Vopulliz,) < CWi(p,v)s.
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Numerical illustrations

> let ¥ =Y =[0,1]*, p=1on X.

> Project L%(p,R?) onto a finite dimensional space.

Distance approximation: Wj , vs. W5

Uniforms

Gaussian: Mixture of 4 Gaussians
06] — ¥=x ,f’ TTy=x - 012 y=x
X - 503 N
Tos o2 T oos)
oz S g
01 0.06|
01 “6,»* s 2
01 02z 03 04 05 06 005 010 015 020 025 030 035 %85 0.06 0.08 010 o1z
Wk, vn) Walp, o)

Walpm, vw)
W2, , vs. W3 between point clouds sampled from a Gaussian, a Mixture of 4 Gaussian and a

uniform distribution.
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Numerical illustrations

Wasserstein barycenter [Agueh and Carlier, 2011] approximation
Approximate argmin 25521 AsW3 (1, ps) with g = (Zil As Tus) p.
#

N N 3¢ X X
NN % XK
N8N
L4 d
S0 0

Barycenters of 4 point clouds. Weights (As)s are bilinear w.r.t. the corners of the square.

—
=

Push-forwards of the 20 centroids after clustering of the Monge embeddings of the MNIST

training set.
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Conclusion

p— T, is an Hilbert space embedding that:
» Linearizes to some extent the 2-Wasserstein space.
» s bi-Holder continuous w.r.t. Wo.

» Allows for the direct use of generic ML algorithms on measure data thanks
to the linearity and Hilbertian structure of L?(p).

Future work:
» Not compactly supported target measures.
» More general source measures.
» Statistical properties: concentration and sample complexity of the defined
distances.
> Applications: compact encoding of T,, € L?(p) that scales well to high
dimensions.

14/14



References |

[

[

Agueh, M. and Carlier, G. (2011).
Barycenters in the Wasserstein space.
SIAM Journal on Mathematical Analysis, 43(2):904-924.

Berman, R. J. (2018).

Convergence rates for discretized monge-ampére equations and
quantitative stability of optimal transport.

arXiv preprint 1803.00785.

Brenier, Y. (1991).

Polar factorization and monotone rearrangement of vector-valued
functions.

Communications on Pure and Applied Mathematics, 44(4):375-417.

Genevay, A., Cuturi, M., Peyré, G., and Bach, F. (2016).
Stochastic optimization for large-scale optimal transport.

In Advances in neural information processing systems, pages 3440-3448.

Gigli, N. (2011).

On hélder continuity-in-time of the optimal transport map towards
measures along a curve.

Proceedings of the Edinburgh Mathematical Society, 54(2):401-409.

14/14



References Il

B

B

Kitagawa, J., Mérigot, Q., and Thibert, B. (2019).
Convergence of a newton algorithm for semi-discrete optimal transport.
Journal of the European Mathematical Society.

Paty, F.-P., d'Aspremont, A., and Cuturi, M. (2019).
Regularity as regularization: Smooth and strongly convex brenier
potentials in optimal transport.

Peyré, G. and Cuturi, M. (2019).
Computational optimal transport.
Foundations and Trends in Machine Learning, 11(5-6):355—607.

Wang, W., Slepcev, D., Basu, S., Ozolek, J. A., and Rohde, G. K. (2013).

A linear optimal transportation framework for quantifying and visualizing
variations in sets of images.
Int. J. Comput. Vision, 101(2):254-269.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J.
(2015).

3d shapenets: A deep representation for volumetric shapes.

In CVPR, pages 1912-1920. IEEE Computer Society.

14/14



References I

@ Yu, L., Efstathiou, K., Isenberg, P., and Isenberg, T. (2012).
Efficient structure-aware selection techniques for 3d point cloud
visualizations with 2dof input.

IEEE Transactions on Visualization and Computer Graphics,
18(12):2245-2254.

14/14



	Introduction
	Appendix

