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Linearization of the 2-Wasserstein space
and stability of Optimal Transport maps

I1I1I. Known properties of Monge’s V. Numerical illustrations

I1I. Monge’s embedding

Overview

Wasserstein distances:

e Give a geometry to spaces of probability measures.

o Are defined using Optimal Transport (OT) theory.

Problem motivation:

e Wasserstein spaces are curved and Wasserstein
distances are not Hilbertian: generic Machine Learning
algorithms cannot readily work on measure data using
the Wasserstein geometry.

e The comparison of k& measures involve the resolution of

k<k2_1) OT problems which can be prohibitive.

Our contributions:

e Propose a measure embedding into a Hilbert space that
can be computed efliciently in practice.

e Show that this embedding induces a distance that is
bi-Holder equivalent to the 2-Wasserstein distance.

e [llustrate the behavior and applications of the
embedding on toy examples.

I. 2-Wasserstein distances and spaces

For Y C R? compact and convex, the 2-Wasserstein dis-
tance is defined for p, v € P()) as

Wi(u,v) ;= inf ly — /' I7dv(y, ),

yell(p,v) JYXY

with H‘(,u, v) ={y e MY xY)|VAC Y ~A < Y) =
w(A),v(Y x A) = v(A)} the matchings between 1 and v.

The 2-Wasserstein space (P()), Ws) is a curved met-
ric space: Wy(u,v) is actually the length of the shortest
curve (geodesic) connecting 1 and v.
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d defined on a Z x Z is an Hilbertian distance if there
exists a Hilbert space H and a mapping ¢ : Z2 — H s.t.

Vz,z'in Z,d(z,2) = |[¢(2) = o(2)|n.

Wasserstein distances are not Hilbertian when
d > 2.

embedding

For X C B(0, My) C R?compact and convex, p a fixed
absolutely continuous measure supported on X', define
Monge’s embedding of ;; as the mapping to the solution
of Monge’s OT problem between p and

e The Monge’s embedding is injective.
® Define

Walpt,v) = 1T = Tolliz |

W, , is an Hilbertian distance.

[ llz - T(x)\\%(az)d(x)) ,‘

where 7" 1s a transport map between p and p, l.e. Typ = L.
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e The Monge’s embedding is reverse-Lipschitz:
Walis,v) < Wa (11,0,

e The Monge’s embedding is in general not better than

-0 %—Hélder w.r.t. Wo.
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e u= 3 us, o (Holder-continuity near a regular measure) For

i, v € P(Y) such that 7, is K-Lipschitz,

By Brenier, 7), always exist and is uniquely defined as the
gradient 7), = V¢, of a convex function ¢, : X — R.

Wa o, v) < 2\/MXKW2(,LL, )2,

e (Dimension-dependent Ho6lder continuity)
Riemannian interpretation [4]: (Corollary from [1]) For p = 1 on X with unit volume, for
T, € L*(p) that includes the tangent space to P(Y) at p. any 1, v € P(Y),
—> u = 1, can be interpreted as the inverse of an 1
exponential map. Wao(, v) S Walp, v)e@227,

(A < B means that A < CB for a constant C' depending only on d, the diameters of X and ), My and My)

IV. Dimension-independent Holder-continuity of the Monge embedding

Theorem. For p = 1 on X’ with unit volume, for any u,v € P(Y),
Waplye ) < Walge 0)/".

Sketch of Proof.
o Take 11 and v defined on {yi, ...

e Semi-discrete OT:

» Kantorovich dual (squared-Euclidean cost): |(D,) = ming.yr [y ¢¥*dp + [y, 9dpu|, with 9* the Legendre transform of :
Vo € X, ¢*(r) = max,ey(x|y) — ¥(y). Actually, for ¢, solution of (D,): ¢, =1,* and |1, = V¢,
o Finitely-supported target: when ;1 = 37 110y, 1 = 1 € RY with 4b; = ¥(y;), finite-dimensional optimization problem:

, YN} (general case by a density argument) = Semi-discrete OT.

with (Vj(v)); = Laguerre cells:

N N |
(D) = min K(2)) := Z/‘/(¢)(<$|yz> — ;)dp(x) + Zm% V1<i < N Vi(yp) ={z € X | Vj,¢; > o + (y; — yilz) }.
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e Study of K: By [2], VK(v) = u — G(v) with |G;(¢) = p(Vi()) and G(vp) = (G;i(1))1<i<n € RY|
Jacobian of G: Let S, = {1p € RY | Vi, G;(¢) > 0}. On S, G is C! and

oG, vol™Y(Ty) : :
| | () = T for £ jand Ty, = Vi(ap) N Vj(2p) K
P0) = (B0 g v {%% 5 So) | | ’A

» Discrete Poincaré-Wirtinger inequality (from [3]): local lower-bound of the smallest non-zero eigenvalue of DG(v). For
Y€ S, andv e RY,

L (VIGW)ry — (IG5 S (Do) |

e Stability of dual potentials:

W[

H% — ¢u||L2(M+y) 5 Wl(ﬂa V) :

e Stability of OT maps:

2

IVoy, = Voull ) S Wilp, v)®.

Setting: X =Y =[0,1?CR% p=1on X.
Vectorization of Monge maps: with X;; = |

(L ) - define
T, = (f)(stTMdp>

m’ m
Distance approximation:
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Figure: Wo(u,v) vs. || T, — T |2 (< |7, — T} ||12(,)) between point clouds
sampled from a Gaussian, a Mixture of 4 Gaussian and a Uniform distribu-
tion.

Sampling approximation:
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Figure: (1-3) Densities of the sampled targets. (4) Sampling distances
|1}, — Ty lli2(p) as a function of IV
Barycenter approximation:
Approximate — argmin, S0 AW (1, fs)

(25:1 ASTMS) i pP-

with

Figure: Barycenters of 4 point clouds. Weights () are bilinear w.r.t. the
corners of the square.

Figure: Push-forwards of the 20 centroids after clustering with K-Means++
the Monge map embeddings of the MNIST training set.
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