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Overview

Wasserstein distances:
•Give a geometry to spaces of probability measures.
•Are defined using Optimal Transport (OT) theory.
Problem motivation:
•Wasserstein spaces are curved and Wasserstein
distances are not Hilbertian: generic Machine Learning
algorithms cannot readily work on measure data using
the Wasserstein geometry.
•The comparison of k measures involve the resolution of
k(k−1)

2 OT problems which can be prohibitive.
Our contributions:
•Propose a measure embedding into a Hilbert space that
can be computed efficiently in practice.
• Show that this embedding induces a distance that is
bi-Hölder equivalent to the 2-Wasserstein distance.
• Illustrate the behavior and applications of the
embedding on toy examples.

I. 2-Wasserstein distances and spaces

For Y ⊂ Rd compact and convex, the 2-Wasserstein dis-
tance is defined for µ, ν ∈ P(Y) as

W2
2(µ, ν) := inf

γ∈Π(µ,ν)

∫
Y×Y
‖y − y′‖2dγ(y, y′),

with Π(µ, ν) := {γ ∈ M(Y × Y) | ∀A ⊂ Y , γ(A × Y) =
µ(A), γ(Y × A) = ν(A)} the matchings between µ and ν.

The 2-Wasserstein space (P(Y),W2) is a curved met-
ric space: W2(µ, ν) is actually the length of the shortest
curve (geodesic) connecting µ and ν.
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d defined on a Z×Z is an Hilbertian distance if there
exists a Hilbert space H and a mapping φ : Z → H s.t.
∀z, z′ in Z , d(z, z′) = ||φ(z)− φ(z′)||H.

Wasserstein distances are not Hilbertian when
d ≥ 2.

II. Monge’s embedding

ForX ⊂ B(0,MX ) ⊂ Rd compact and convex, ρ a fixed
absolutely continuous measure supported on X , define
Monge’s embedding of µ as the mapping to the solution
of Monge’s OT problem between ρ and µ:

µ 7→
(
Tµ := arg min

T∈X→Y

∫
X
‖x− T (x)‖2ρ(x)d(x)

)
,

where T is a transport map between ρ and µ, i.e. T#ρ = µ.

= [0, 1]2 =
6

i = 1
i yi

T

By Brenier, Tµ always exist and is uniquely defined as the
gradient Tµ = ∇φµ of a convex function φµ : X → R.

Riemannian interpretation [4]:
Tµ ∈ L2(ρ) that includes the tangent space to P(Y) at ρ.
=⇒ µ 7→ Tµ can be interpreted as the inverse of an
exponential map.

III. Known properties of Monge’s
embedding

•The Monge’s embedding is injective.
•Define

W2,ρ(µ, ν) := ‖Tµ − Tν‖L2(ρ),

W2,ρ is an Hilbertian distance.
•The Monge’s embedding is reverse-Lipschitz:

W2(µ, ν) ≤W2,ρ(µ, ν).
•The Monge’s embedding is in general not better than

1
2-Hölder w.r.t. W2.

||Tµθ − Tµθ+δ||L2(ρ) ≥ CW2(µθ, µθ+δ)1/2

• (Hölder-continuity near a regular measure) For
µ, ν ∈ P(Y) such that Tµ is K-Lipschitz,

W2,ρ(µ, ν) ≤ 2
√
MXKW2(µ, ν)1/2.

• (Dimension-dependent Hölder continuity)
(Corollary from [1]) For ρ ≡ 1 on X with unit volume, for
any µ, ν ∈ P(Y),

W2,ρ(µ, ν) . W2(µ, ν)
1

(d+2)2(d−1).

(A . B means that A ≤ CB for a constant C depending only on d, the diameters of X and Y , MX and MY)

IV. Dimension-independent Hölder-continuity of the Monge embedding

Theorem. For ρ ≡ 1 on X with unit volume, for any µ, ν ∈ P(Y),

W2,ρ(µ, ν) . W2(µ, ν)2/15.

Sketch of Proof.
•Take µ and ν defined on {y1, . . . , yN} (general case by a density argument) =⇒ Semi-discrete OT.
• Semi-discrete OT:
•Kantorovich dual (squared-Euclidean cost): (Dµ) = minψ:Y→R

∫
X ψ

∗dρ +
∫
Y ψdµ , with ψ∗ the Legendre transform of ψ:

∀x ∈ X , ψ∗(x) = maxy∈Y〈x|y〉 − ψ(y). Actually, for ψµ solution of (Dµ): φµ = ψµ
∗ and Tµ = ∇φµ .

•Finitely-supported target: when µ =
∑N

i=1 µiδyi, ψ ≡ ψ ∈ RN with ψi = ψ(yi), finite-dimensional optimization problem:

(D) = min
ψ∈RN

K(ψ) :=
N∑
i=1

∫
Vi(ψ)

(〈x|yi〉 −ψi)dρ(x) +
N∑
i=1

µiψi,
with (Vi(ψ))i = Laguerre cells:

∀1 ≤ i ≤ N, Vi(ψ) = {x ∈ X | ∀j,ψj ≥ ψi + 〈yj − yi|x〉}.

• Study of K: By [2], ∇K(ψ) = µ−G(ψ) with Gi(ψ) = ρ(Vi(ψ)) and G(ψ) = (Gi(ψ))1≤i≤N ∈ RN .
Jacobian of G: Let S+ = {ψ ∈ RN | ∀i, Gi(ψ) > 0}. On S+, G is C1 and

DG(ψ) =
(
∂Gi

∂ψj
(ψ)

)
1≤i,j≤N

with


∂Gi

∂ψj
(ψ) = vold−1(Γij)

‖yj−yi‖ for i 6= j and Γij = Vi(ψ) ∩ Vj(ψ)
∂Gi

∂ψi
(ψ) = −

∑
j 6=i

∂Gi

∂ψj
(ψ)

•Discrete Poincaré-Wirtinger inequality (from [3]): local lower-bound of the smallest non-zero eigenvalue of DG(ψ). For
ψ ∈ S+ and v ∈ RN ,

〈v2|G(ψ)〉RN − 〈v|G(ψ)〉2RN . 〈DG(ψ)v|v〉RN .

• Stability of dual potentials:
‖ψν − ψµ‖L2(µ+ν) . W1(µ, ν)

1
3.

• Stability of OT maps:
‖∇φν −∇φµ‖L2(ρ) . W1(µ, ν)

2
15.

V. Numerical illustrations

Setting: X = Y = [0, 1]2 ⊂ Rd. ρ ≡ 1 on X .
Vectorization of Monge maps: with Xs,t = [ sm,

s+1
m ) ×

[ tm,
t+1
m ), define

Tµ :=
(∫
Xs,t
Tµdρ

)
1≤s,t≤m

.

Distance approximation:

0.1 0.2 0.3 0.4 0.5 0.6
W2( M, N)

0.1

0.2

0.3

0.4

0.5

0.6

||T
M

T
N
|| L

2 (
)

Gaussians
y = x

0.05 0.10 0.15 0.20 0.25 0.30 0.35
W2( M, N)

0.1

0.2

0.3

||T
M

T
N
|| L

2 (
)

Mixture of 4 Gaussians
y = x

0.04 0.06 0.08 0.10 0.12
W2( M, N)

0.04

0.06

0.08

0.10

0.12

||T
M

T
N
|| L

2 (
)

Uniforms
y = x

Figure: W2(µ, ν) vs. ‖Tµ−Tν‖2 (≤ ‖Tµ−Tν‖L2(ρ)) between point clouds
sampled from a Gaussian, a Mixture of 4 Gaussian and a Uniform distribu-
tion.

Sampling approximation:

Figure: (1–3) Densities of the sampled targets. (4) Sampling distances
‖Tµ − TµN‖L2(ρ) as a function of N

Barycenter approximation:
Approximate argminµ

∑S
s=1 λsW2

2(µ, µs) with µ =(∑S
s=1 λsTµs

)
# ρ.

Figure: Barycenters of 4 point clouds. Weights (λs)s are bilinear w.r.t. the
corners of the square.

Figure: Push-forwards of the 20 centroids after clustering with K-Means++
the Monge map embeddings of the MNIST training set.
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